Suppr超能文献

流形学习揭示了青少年大脑与环境之间的非线性相互作用,这些相互作用可预测情绪和行为问题。

Manifold Learning Uncovers Nonlinear Interactions Between the Adolescent Brain and Environment That Predict Emotional and Behavioral Problems.

作者信息

Busch Erica L, Conley May I, Baskin-Sommers Arielle

机构信息

Department of Psychology, Yale University, New Haven, Connecticut.

Department of Psychology, Yale University, New Haven, Connecticut.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 May;10(5):463-474. doi: 10.1016/j.bpsc.2024.07.001. Epub 2024 Jul 14.

Abstract

BACKGROUND

To progress adolescent mental health research beyond our present achievements-a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment-we need methods to uncover relationships between the developing brain and real-world environmental experiences.

METHODS

We investigated associations between brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain Cognitive Development (ABCD) Study (n = 2401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data such as functional magnetic resonance imaging. Specifically, we developed exogenous PHATE (potential of heat-diffusion for affinity-based trajectory embedding) (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing tasks to predict individual differences in cognition and emotional and behavioral problems both cross-sectionally and longitudinally.

RESULTS

E-PHATE embeddings of participants' brain activation and environments at baseline showed moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, compared with the zero-to-small effects achieved by voxelwise data or common low-dimensional embedding methods. E-PHATE embeddings of the brain and environment at baseline were also related to emotional and behavioral problems 2 years later. These longitudinal predictions showed a consistent moderate effect in the frontoparietal and attention networks.

CONCLUSIONS

The embedding of the adolescent brain in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrated how the harmonization of cutting-edge computational methods with longstanding developmental theories advances the detection and prediction of adolescent emotional and behavioral problems.

摘要

背景

为了推动青少年心理健康研究超越我们目前的成果——对大脑和环境风险因素进行复杂描述,但却不了解神经生物学在环境中的嵌入情况——我们需要一些方法来揭示发育中的大脑与现实世界环境体验之间的关系。

方法

我们利用青少年大脑认知发展(ABCD)研究中的参与者(n = 2401名女性),调查了大脑功能、环境与情绪和行为问题之间的关联。我们应用了流形学习,这是一种从诸如功能磁共振成像等高维生物医学数据中揭示潜在结构的有前景的技术。具体而言,我们开发了外源性PHATE(基于亲和力轨迹嵌入的热扩散潜力)(E-PHATE)来模拟大脑与环境的相互作用。我们使用参与者在情绪和认知处理任务期间大脑激活的E-PHATE嵌入,从横断面和纵向预测认知以及情绪和行为问题的个体差异。

结果

与体素数据或常见低维嵌入方法所产生的零到小的效应相比,参与者基线时大脑激活和环境的E-PHATE嵌入在几个皮层下区域和大规模皮层网络中与基线时的总体、外化和内化问题呈现出中度到高度的关联。基线时大脑和环境的E-PHATE嵌入也与两年后的情绪和行为问题相关。这些纵向预测在前额叶顶叶和注意力网络中显示出一致的中度效应。

结论

将青少年大脑嵌入环境中能更深入地洞察情绪和行为问题。通过使用E-PHATE,我们展示了前沿计算方法与长期发展理论的结合如何推进对青少年情绪和行为问题的检测和预测。

相似文献

10
Multi-view manifold learning of human brain-state trajectories.人类脑状态轨迹的多视图流形学习
Nat Comput Sci. 2023 Mar;3(3):240-253. doi: 10.1038/s43588-023-00419-0. Epub 2023 Mar 27.

本文引用的文献

1
Understanding divergence: Placing developmental neuroscience in its dynamic context.理解分歧:将发展神经科学置于其动态背景中。
Neurosci Biobehav Rev. 2024 Feb;157:105539. doi: 10.1016/j.neubiorev.2024.105539. Epub 2024 Jan 9.
3
An 'embedded brain' approach to understanding antisocial behaviour.一种理解反社会行为的“嵌入式大脑”方法。
Trends Cogn Sci. 2024 Feb;28(2):159-171. doi: 10.1016/j.tics.2023.08.013. Epub 2023 Sep 15.
4
Multi-view manifold learning of human brain-state trajectories.人类脑状态轨迹的多视图流形学习
Nat Comput Sci. 2023 Mar;3(3):240-253. doi: 10.1038/s43588-023-00419-0. Epub 2023 Mar 27.
5
Manifold learning for fMRI time-varying functional connectivity.用于功能磁共振成像时变功能连接的流形学习
Front Hum Neurosci. 2023 Jul 11;17:1134012. doi: 10.3389/fnhum.2023.1134012. eCollection 2023.
8
Geometry Regularized Autoencoders.几何正则化自动编码器。
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7381-7394. doi: 10.1109/TPAMI.2022.3222104. Epub 2023 May 5.
10
The Amygdala and Depression: A Sober Reconsideration.杏仁核与抑郁症:一次清醒的重新审视
Am J Psychiatry. 2022 Jul;179(7):454-457. doi: 10.1176/appi.ajp.20220412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验