Aurell Alexander, Carmona René, Dayanıklı Gökçe, Laurière Mathieu
Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544 USA.
Dyn Games Appl. 2022;12(1):49-81. doi: 10.1007/s13235-021-00410-2. Epub 2022 Jan 1.
We consider a game for a continuum of non-identical players evolving on a finite state space. Their heterogeneous interactions are represented with a graphon, which can be viewed as the limit of a dense random graph. A player's transition rates between the states depend on their control and the strength of interaction with the other players. We develop a rigorous mathematical framework for the game and analyze Nash equilibria. We provide a sufficient condition for a Nash equilibrium and prove existence of solutions to a continuum of fully coupled forward-backward ordinary differential equations characterizing Nash equilibria. Moreover, we propose a numerical approach based on machine learning methods and we present experimental results on different applications to compartmental models in epidemiology.
我们考虑一个在有限状态空间上演化的连续统非同质参与者的博弈。他们的异质相互作用由一个图子表示,图子可被视为稠密随机图的极限。参与者在不同状态之间的转移速率取决于他们的控制以及与其他参与者的相互作用强度。我们为该博弈建立了一个严格的数学框架并分析纳什均衡。我们给出了纳什均衡的一个充分条件,并证明了刻画纳什均衡的连续统完全耦合的 forward-backward 常微分方程解的存在性。此外,我们提出了一种基于机器学习方法的数值方法,并展示了在流行病学 compartmental 模型不同应用上的实验结果。