文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习提高了tau正电子发射断层扫描在阿尔茨海默病研究中的效用。

Deep learning improves utility of tau PET in the study of Alzheimer's disease.

作者信息

Zou James, Park David, Johnson Aubrey, Feng Xinyang, Pardo Michelle, France Jeanelle, Tomljanovic Zeljko, Brickman Adam M, Devanand Devangere P, Luchsinger José A, Kreisl William C, Provenzano Frank A

机构信息

The Taub Institute for Research on Alzheimer's Disease and the Aging Brain New York New York USA.

Department of Medicine Columbia University Medical Center New York New York USA.

出版信息

Alzheimers Dement (Amst). 2021 Dec 31;13(1):e12264. doi: 10.1002/dad2.12264. eCollection 2021.


DOI:10.1002/dad2.12264
PMID:35005197
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8719427/
Abstract

INTRODUCTION: Positron emission tomography (PET) imaging targeting neurofibrillary tau tangles is increasingly used in the study of Alzheimer's disease (AD), but its utility may be limited by conventional quantitative or qualitative evaluation techniques in earlier disease states. Convolutional neural networks (CNNs) are effective in learning spatial patterns for image classification. METHODS: 18F-MK6240 (n = 320) and AV-1451 (n = 446) PET images were pooled from multiple studies. We performed iterations with differing permutations of radioligands, heuristics, and architectures. Performance was compared to a standard region of interest (ROI)-based approach on prediction of memory impairment. We visualized attention of the network to illustrate decision making. RESULTS: Overall, models had high accuracy (> 80%) with good average sensitivity and specificity (75% and 82%, respectively), and had comparable or higher accuracy to the ROI standard. Visualizations of model attention highlight known characteristics of tau radioligand binding. DISCUSSION: CNNs could improve tau PET's role in early disease and extend the utility of tau PET across generations of radioligands.

摘要

引言:针对神经纤维缠结的正电子发射断层扫描(PET)成像在阿尔茨海默病(AD)研究中的应用日益广泛,但其在疾病早期状态下的效用可能受到传统定量或定性评估技术的限制。卷积神经网络(CNN)在学习用于图像分类的空间模式方面很有效。 方法:从多项研究中汇总了18F-MK6240(n = 320)和AV-1451(n = 446)的PET图像。我们对放射性配体、启发式方法和架构的不同排列进行了迭代。在预测记忆障碍方面,将模型性能与基于标准感兴趣区域(ROI)的方法进行了比较。我们可视化了网络的注意力以说明决策过程。 结果:总体而言,模型具有较高的准确率(> 80%),平均敏感性和特异性良好(分别为75%和82%),并且与ROI标准相比具有相当或更高的准确率。模型注意力的可视化突出了tau放射性配体结合的已知特征。 讨论:CNN可以改善tau PET在疾病早期的作用,并扩展tau PET在几代放射性配体中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/a2d4b74e1556/DAD2-13-e12264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/b300425cd19d/DAD2-13-e12264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/f518a618e38b/DAD2-13-e12264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/a2d4b74e1556/DAD2-13-e12264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/b300425cd19d/DAD2-13-e12264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/f518a618e38b/DAD2-13-e12264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ef/8719427/a2d4b74e1556/DAD2-13-e12264-g003.jpg

相似文献

[1]
Deep learning improves utility of tau PET in the study of Alzheimer's disease.

Alzheimers Dement (Amst). 2021-12-31

[2]
Quantitative F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients.

Front Neurol. 2019-5-15

[3]
Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer's disease cases.

Eur J Nucl Med Mol Imaging. 2021-4

[4]
Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages.

Brain. 2016-3-2

[5]
Visually Identified Tau 18F-MK6240 PET Patterns in Symptomatic Alzheimer's Disease.

J Alzheimers Dis. 2022

[6]
Deep learning detection of informative features in tau PET for Alzheimer's disease classification.

BMC Bioinformatics. 2020-12-28

[7]
18F-MK-6240 PET for early and late detection of neurofibrillary tangles.

Brain. 2020-9-1

[8]
Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages.

Brain. 2021-12-16

[9]
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

Neuroinformatics. 2018-10

[10]
Association between long-term donepezil treatment and brain regional amyloid and tau burden among individuals with mild cognitive impairment assessed using F-AV-45 and F-AV-1451 PET.

J Neurosci Res. 2022-2

引用本文的文献

[1]
Classifying mild cognitive impairment from normal cognition: fMRI complexity matches tau PET performance.

Alzheimers Dement (Amst). 2025-8-12

[2]
Brain tau PET-based identification and characterization of subpopulations in patients with Alzheimer's disease using deep learning-derived saliency maps.

EJNMMI Phys. 2025-6-9

[3]
Classifying Mild Cognitive Impairment from Normal Cognition: fMRI Complexity Matches Tau PET Performance.

bioRxiv. 2025-1-17

[4]
A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles.

Brain Commun. 2023-11-16

[5]
Application of Deep Learning for Prediction of Alzheimer's Disease in PET/MR Imaging.

Bioengineering (Basel). 2023-9-24

[6]
Advancing Tau-PET quantification in Alzheimer's disease with machine learning: introducing THETA, a novel tau summary measure.

Res Sq. 2023-10-18

[7]
Improved interpretation of F-florzolotau PET in progressive supranuclear palsy using a normalization-free deep-learning classifier.

iScience. 2023-7-20

[8]
Deep learning application for the classification of Alzheimer's disease using F-flortaucipir (AV-1451) tau positron emission tomography.

Sci Rep. 2023-5-19

本文引用的文献

[1]
Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI.

PeerJ Comput Sci. 2021-5-25

[2]
Sex differences in off-target binding using tau positron emission tomography.

Neuroimage Clin. 2021

[3]
A multicenter comparison of [F]flortaucipir, [F]RO948, and [F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis.

Eur J Nucl Med Mol Imaging. 2021-7

[4]
Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer's disease.

Alzheimers Dement. 2021-12

[5]
Four distinct trajectories of tau deposition identified in Alzheimer's disease.

Nat Med. 2021-5

[6]
Improved amyloid burden quantification with nonspecific estimates using deep learning.

Eur J Nucl Med Mol Imaging. 2021-6

[7]
What Is T+? A Gordian Knot of Tracers, Thresholds, and Topographies.

J Nucl Med. 2021-5-10

[8]
Deep learning detection of informative features in tau PET for Alzheimer's disease classification.

BMC Bioinformatics. 2020-12-28

[9]
Evaluation of a visual interpretation method for tau-PET with F-flortaucipir.

Alzheimers Dement (Amst). 2020-11-28

[10]
Relationship Between Tau and Cognition in the Evolution of Alzheimer's Disease: New Insights from Tau PET.

J Nucl Med. 2021-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索