Suppr超能文献

使用纵向和全脑3D磁共振成像对诊断后3年轻度认知障碍转化为阿尔茨海默病进行深度学习预测。

Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI.

作者信息

Ocasio Ethan, Duong Tim Q

机构信息

Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America.

出版信息

PeerJ Comput Sci. 2021 May 25;7:e560. doi: 10.7717/peerj-cs.560. eCollection 2021.

Abstract

BACKGROUND

While there is no cure for Alzheimer's disease (AD), early diagnosis and accurate prognosis of AD may enable or encourage lifestyle changes, neurocognitive enrichment, and interventions to slow the rate of cognitive decline. The goal of our study was to develop and evaluate a novel deep learning algorithm to predict mild cognitive impairment (MCI) to AD conversion at three years after diagnosis using longitudinal and whole-brain 3D MRI.

METHODS

This retrospective study consisted of 320 normal cognition (NC), 554 MCI, and 237 AD patients. Longitudinal data include T1-weighted 3D MRI obtained at initial presentation with diagnosis of MCI and at 12-month follow up. Whole-brain 3D MRI volumes were used without a priori segmentation of regional structural volumes or cortical thicknesses. MRIs of the AD and NC cohort were used to train a deep learning classification model to obtain weights to be applied via transfer learning for prediction of MCI patient conversion to AD at three years post-diagnosis. Two (zero-shot and fine tuning) transfer learning methods were evaluated. Three different convolutional neural network (CNN) architectures (sequential, residual bottleneck, and wide residual) were compared. Data were split into 75% and 25% for training and testing, respectively, with 4-fold cross validation. Prediction accuracy was evaluated using balanced accuracy. Heatmaps were generated.

RESULTS

The sequential convolutional approach yielded slightly better performance than the residual-based architecture, the zero-shot transfer learning approach yielded better performance than fine tuning, and CNN using longitudinal data performed better than CNN using a single timepoint MRI in predicting MCI conversion to AD. The best CNN model for predicting MCI conversion to AD at three years after diagnosis yielded a balanced accuracy of 0.793. Heatmaps of the prediction model showed regions most relevant to the network including the lateral ventricles, periventricular white matter and cortical gray matter.

CONCLUSIONS

This is the first convolutional neural network model using longitudinal and whole-brain 3D MRIs without extracting regional brain volumes or cortical thicknesses to predict future MCI to AD conversion at 3 years after diagnosis. This approach could lead to early prediction of patients who are likely to progress to AD and thus may lead to better management of the disease.

摘要

背景

虽然阿尔茨海默病(AD)无法治愈,但对AD进行早期诊断和准确预后评估可能有助于或鼓励人们改变生活方式、进行神经认知强化以及采取干预措施来减缓认知衰退的速度。我们研究的目的是开发并评估一种新型深度学习算法,该算法利用纵向和全脑三维磁共振成像(MRI)来预测诊断后三年轻度认知障碍(MCI)向AD的转化。

方法

这项回顾性研究纳入了320名认知正常(NC)者、554名MCI患者和237名AD患者。纵向数据包括在初次诊断为MCI时以及随访12个月时获取的T1加权三维MRI。使用全脑三维MRI体积,无需对区域结构体积或皮质厚度进行先验分割。利用AD和NC队列的MRI训练深度学习分类模型,以获得权重,通过迁移学习应用这些权重来预测诊断后三年MCI患者向AD的转化。评估了两种(零样本和微调)迁移学习方法。比较了三种不同的卷积神经网络(CNN)架构(顺序式、残差瓶颈式和宽残差式)。数据分别以75%和25%划分为训练集和测试集,并进行4折交叉验证。使用平衡准确率评估预测准确性。生成了热图。

结果

顺序卷积方法的性能略优于基于残差的架构,零样本迁移学习方法的性能优于微调,并且在预测MCI向AD的转化时,使用纵向数据的CNN比使用单个时间点MRI的CNN表现更好。用于预测诊断后三年MCI向AD转化的最佳CNN模型的平衡准确率为0.793。预测模型的热图显示了与该网络最相关的区域,包括侧脑室、脑室周围白质和皮质灰质。

结论

这是首个使用纵向和全脑三维MRI且不提取区域脑体积或皮质厚度来预测诊断后三年未来MCI向AD转化的卷积神经网络模型。这种方法可能会对可能进展为AD的患者进行早期预测,从而可能实现对该疾病更好的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34aa/8176545/d47dd73eaf8f/peerj-cs-07-560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验