Suppr超能文献

使用深度学习通过非特异性估计改进淀粉样蛋白负荷定量。

Improved amyloid burden quantification with nonspecific estimates using deep learning.

作者信息

Liu Haohui, Nai Ying-Hwey, Saridin Francis, Tanaka Tomotaka, O' Doherty Jim, Hilal Saima, Gyanwali Bibek, Chen Christopher P, Robins Edward G, Reilhac Anthonin

机构信息

Raffles Institution, Singapore, Singapore.

Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore.

出版信息

Eur J Nucl Med Mol Imaging. 2021 Jun;48(6):1842-1853. doi: 10.1007/s00259-020-05131-z. Epub 2021 Jan 7.

Abstract

PURPOSE

Standardized uptake value ratio (SUVr) used to quantify amyloid-β burden from amyloid-PET scans can be biased by variations in the tracer's nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we propose a novel amyloid-PET quantification approach that harnesses the intermodal image translation capability of convolutional networks to remove this undesirable source of variability.

METHODS

Paired MR and PET images exhibiting very low specific uptake were selected from a Singaporean amyloid-PET study involving 172 participants with different severities of CeVD. Two convolutional neural networks (CNN), ScaleNet and HighRes3DNet, and one conditional generative adversarial network (cGAN) were trained to map structural MR to NS PET images. NS estimates generated for all subjects using the most promising network were then subtracted from SUVr images to determine specific amyloid load only (SAβ). Associations of SAβ with various cognitive and functional test scores were then computed and compared to results using conventional SUVr.

RESULTS

Multimodal ScaleNet outperformed other networks in predicting the NS content in cortical gray matter with a mean relative error below 2%. Compared to SUVr, SAβ showed increased association with cognitive and functional test scores by up to 67%.

CONCLUSION

Removing the undesirable NS uptake from the amyloid load measurement is possible using deep learning and substantially improves its accuracy. This novel analysis approach opens a new window of opportunity for improved data modeling in Alzheimer's disease and for other neurodegenerative diseases that utilize PET imaging.

摘要

目的

用于量化淀粉样蛋白PET扫描中淀粉样蛋白-β负荷的标准化摄取值比率(SUVr)可能会因脑血管疾病(CeVD)的存在导致示踪剂非特异性(NS)结合的变化而产生偏差。在这项研究中,我们提出了一种新的淀粉样蛋白PET定量方法,该方法利用卷积网络的多模态图像转换能力来消除这种不良的变异性来源。

方法

从一项涉及172名不同CeVD严重程度参与者的新加坡淀粉样蛋白PET研究中,选择了具有极低特异性摄取的配对MR和PET图像。训练了两个卷积神经网络(CNN),即ScaleNet和HighRes3DNet,以及一个条件生成对抗网络(cGAN),以将结构MR映射到NS PET图像。然后,从SUVr图像中减去使用最有前景的网络为所有受试者生成的NS估计值,以仅确定特定的淀粉样蛋白负荷(SAβ)。然后计算SAβ与各种认知和功能测试分数的关联,并与使用传统SUVr的结果进行比较。

结果

多模态ScaleNet在预测皮质灰质中的NS含量方面优于其他网络,平均相对误差低于2%。与SUVr相比,SAβ与认知和功能测试分数的关联增加了高达67%。

结论

使用深度学习从淀粉样蛋白负荷测量中去除不良的NS摄取是可能的,并且可以显著提高其准确性。这种新的分析方法为阿尔茨海默病以及其他利用PET成像的神经退行性疾病中改进数据建模打开了一个新的机会窗口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验