Suppr超能文献

周期性驱动的幂律相互作用系统中的局域性与加热

Locality and heating in periodically driven, power-law-interacting systems.

作者信息

Tran Minh C, Ehrenberg Adam, Guo Andrew Y, Titum Paraj, Abanin Dmitry A, Gorshkov Alexey V

机构信息

Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology, University of Maryland, College Park, Maryland 20742, USA.

Joint Quantum Institute, National Institute of Standards and Technology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev A (Coll Park). 2019;100(5). doi: 10.1103/PhysRevA.100.052103.

Abstract

We study the heating time in periodically driven -dimensional systems with interactions that decay with the distance as a power law . Using linear-response theory, we show that the heating time is exponentially long as a function of the drive frequency for . For systems that may not obey linear-response theory, we use a more general Magnus-like expansion to show the existence of quasiconserved observables, which imply exponentially long heating time, for . We also generalize a number of recent state-of-the-art Lieb-Robinson bounds for power-law systems from two-body interactions to -body interactions and thereby obtain a longer heating time than previously established in the literature. Additionally, we conjecture that the gap between the results from the linear-response theory and the Magnus-like expansion does not have physical implications, but is, rather, due to the lack of tight Lieb-Robinson bounds for power-law interactions. We show that the gap vanishes in the presence of a hypothetical, tight bound.

摘要

我们研究了具有随距离按幂律(\sim r^{-s})衰减的相互作用的周期性驱动一维系统中的加热时间。利用线性响应理论,我们表明对于(s > 1),加热时间作为驱动频率的函数呈指数增长。对于可能不服从线性响应理论的系统,我们使用更一般的类马格努斯展开来表明存在准守恒可观测量,这意味着对于(s > 1)加热时间呈指数增长。我们还将幂律系统中一些最新的先进利布 - 罗宾逊界从两体相互作用推广到(n)体相互作用,从而得到比文献中先前确立的更长的加热时间。此外,我们推测线性响应理论和类马格努斯展开结果之间的差距没有物理意义,而是由于幂律相互作用缺乏紧密的利布 - 罗宾逊界。我们表明在存在假设的紧密界的情况下,该差距消失。

相似文献

1
Locality and heating in periodically driven, power-law-interacting systems.
Phys Rev A (Coll Park). 2019;100(5). doi: 10.1103/PhysRevA.100.052103.
2
Locality and Digital Quantum Simulation of Power-Law Interactions.
Phys Rev X. 2019;9. doi: 10.1103/PhysRevX.9.031006.
3
Lieb-Robinson Light Cone for Power-Law Interactions.
Phys Rev Lett. 2021 Oct 15;127(16):160401. doi: 10.1103/PhysRevLett.127.160401.
4
Signaling and scrambling with strongly long-range interactions.
Phys Rev A (Coll Park). 2020;102. doi: 10.1103/PhysRevA.102.010401.
5
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature.
Phys Rev Lett. 2017 Sep 15;119(11):110601. doi: 10.1103/PhysRevLett.119.110601. Epub 2017 Sep 13.
6
Optimal State Transfer and Entanglement Generation in Power-Law Interacting Systems.
Phys Rev X. 2021 Jul;11(3). doi: 10.1103/physrevx.11.031016.
7
Exponentially Slow Heating in Periodically Driven Many-Body Systems.
Phys Rev Lett. 2015 Dec 18;115(25):256803. doi: 10.1103/PhysRevLett.115.256803. Epub 2015 Dec 15.
8
Spread of correlations in long-range interacting quantum systems.
Phys Rev Lett. 2013 Nov 15;111(20):207202. doi: 10.1103/PhysRevLett.111.207202. Epub 2013 Nov 12.
9
Speed limits and locality in many-body quantum dynamics.
Rep Prog Phys. 2023 Sep 29;86(11). doi: 10.1088/1361-6633/acfaae.
10
Lieb-Robinson bounds on -partite connected correlation functions.
Phys Rev A (Coll Park). 2017;96. doi: 10.1103/PhysRevA.96.052334.

引用本文的文献

1
Optimal State Transfer and Entanglement Generation in Power-Law Interacting Systems.
Phys Rev X. 2021 Jul;11(3). doi: 10.1103/physrevx.11.031016.
2
Higher-order and fractional discrete time crystals in clean long-range interacting systems.
Nat Commun. 2021 Apr 20;12(1):2341. doi: 10.1038/s41467-021-22583-5.

本文引用的文献

1
Locality and Digital Quantum Simulation of Power-Law Interactions.
Phys Rev X. 2019;9. doi: 10.1103/PhysRevX.9.031006.
2
Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions.
Phys Rev Lett. 2018 May 18;120(20):200601. doi: 10.1103/PhysRevLett.120.200601.
3
Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions.
Phys Rev Lett. 2017 Oct 27;119(17):170503. doi: 10.1103/PhysRevLett.119.170503. Epub 2017 Oct 25.
4
Exponentially Slow Heating in Periodically Driven Many-Body Systems.
Phys Rev Lett. 2015 Dec 18;115(25):256803. doi: 10.1103/PhysRevLett.115.256803. Epub 2015 Dec 15.
5
Nearly linear light cones in long-range interacting quantum systems.
Phys Rev Lett. 2015 Apr 17;114(15):157201. doi: 10.1103/PhysRevLett.114.157201. Epub 2015 Apr 13.
6
Persistence of locality in systems with power-law interactions.
Phys Rev Lett. 2014 Jul 18;113(3):030602. doi: 10.1103/PhysRevLett.113.030602. Epub 2014 Jul 16.
7
Observation of dipolar spin-exchange interactions with lattice-confined polar molecules.
Nature. 2013 Sep 26;501(7468):521-5. doi: 10.1038/nature12483. Epub 2013 Sep 18.
9
Onset of a quantum phase transition with a trapped ion quantum simulator.
Nat Commun. 2011 Jul 5;2:377. doi: 10.1038/ncomms1374.
10
Lieb-Robinson bounds and the generation of correlations and topological quantum order.
Phys Rev Lett. 2006 Aug 4;97(5):050401. doi: 10.1103/PhysRevLett.97.050401. Epub 2006 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验