Suppr超能文献

周期性驱动的幂律相互作用系统中的局域性与加热

Locality and heating in periodically driven, power-law-interacting systems.

作者信息

Tran Minh C, Ehrenberg Adam, Guo Andrew Y, Titum Paraj, Abanin Dmitry A, Gorshkov Alexey V

机构信息

Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology, University of Maryland, College Park, Maryland 20742, USA.

Joint Quantum Institute, National Institute of Standards and Technology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev A (Coll Park). 2019;100(5). doi: 10.1103/PhysRevA.100.052103.

Abstract

We study the heating time in periodically driven -dimensional systems with interactions that decay with the distance as a power law . Using linear-response theory, we show that the heating time is exponentially long as a function of the drive frequency for . For systems that may not obey linear-response theory, we use a more general Magnus-like expansion to show the existence of quasiconserved observables, which imply exponentially long heating time, for . We also generalize a number of recent state-of-the-art Lieb-Robinson bounds for power-law systems from two-body interactions to -body interactions and thereby obtain a longer heating time than previously established in the literature. Additionally, we conjecture that the gap between the results from the linear-response theory and the Magnus-like expansion does not have physical implications, but is, rather, due to the lack of tight Lieb-Robinson bounds for power-law interactions. We show that the gap vanishes in the presence of a hypothetical, tight bound.

摘要

我们研究了具有随距离按幂律(\sim r^{-s})衰减的相互作用的周期性驱动一维系统中的加热时间。利用线性响应理论,我们表明对于(s > 1),加热时间作为驱动频率的函数呈指数增长。对于可能不服从线性响应理论的系统,我们使用更一般的类马格努斯展开来表明存在准守恒可观测量,这意味着对于(s > 1)加热时间呈指数增长。我们还将幂律系统中一些最新的先进利布 - 罗宾逊界从两体相互作用推广到(n)体相互作用,从而得到比文献中先前确立的更长的加热时间。此外,我们推测线性响应理论和类马格努斯展开结果之间的差距没有物理意义,而是由于幂律相互作用缺乏紧密的利布 - 罗宾逊界。我们表明在存在假设的紧密界的情况下,该差距消失。

相似文献

3
Lieb-Robinson Light Cone for Power-Law Interactions.幂律相互作用的利布-罗宾逊光锥。
Phys Rev Lett. 2021 Oct 15;127(16):160401. doi: 10.1103/PhysRevLett.127.160401.
7
Exponentially Slow Heating in Periodically Driven Many-Body Systems.周期性驱动多体系统中的指数级缓慢加热
Phys Rev Lett. 2015 Dec 18;115(25):256803. doi: 10.1103/PhysRevLett.115.256803. Epub 2015 Dec 15.
8
Spread of correlations in long-range interacting quantum systems.长程相互作用量子系统中关联的传播。
Phys Rev Lett. 2013 Nov 15;111(20):207202. doi: 10.1103/PhysRevLett.111.207202. Epub 2013 Nov 12.

本文引用的文献

4
Exponentially Slow Heating in Periodically Driven Many-Body Systems.周期性驱动多体系统中的指数级缓慢加热
Phys Rev Lett. 2015 Dec 18;115(25):256803. doi: 10.1103/PhysRevLett.115.256803. Epub 2015 Dec 15.
5
Nearly linear light cones in long-range interacting quantum systems.长程相互作用量子系统中的近线性光锥。
Phys Rev Lett. 2015 Apr 17;114(15):157201. doi: 10.1103/PhysRevLett.114.157201. Epub 2015 Apr 13.
6
Persistence of locality in systems with power-law interactions.具有幂律相互作用的系统中局部性的持续性。
Phys Rev Lett. 2014 Jul 18;113(3):030602. doi: 10.1103/PhysRevLett.113.030602. Epub 2014 Jul 16.
10
Lieb-Robinson bounds and the generation of correlations and topological quantum order.李-罗宾逊界与关联的产生及拓扑量子序
Phys Rev Lett. 2006 Aug 4;97(5):050401. doi: 10.1103/PhysRevLett.97.050401. Epub 2006 Jul 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验