Tran Minh C, Guo Andrew Y, Su Yuan, Garrison James R, Eldredge Zachary, Foss-Feig Michael, Childs Andrew M, Gorshkov Alexey V
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev X. 2019;9. doi: 10.1103/PhysRevX.9.031006.
The propagation of information in nonrelativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance as a power law, 1/ . The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah , FOCS'18. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when > 3 (where is the number of dimensions).
信息在非相对论量子系统中的传播遵循一种被称为利布 - 罗宾逊界的速度限制。我们为具有随距离按幂律1 / 衰减的相互作用的系统推导了一个新的利布 - 罗宾逊界。该界意味着一个比所有先前界都更紧凑的有效光锥。我们的方法基于一种用于近似系统时间演化的技术,该技术最初由哈阿(Haah)作为量子模拟算法的一部分于2018年在计算机基础科学研讨会(FOCS)上引入。为了界定近似的误差,我们使用一个比我们所建立的界更弱的已知利布 - 罗宾逊界。这一结果使分析形成了一个完整的循环,暗示了利布 - 罗宾逊界与数字量子模拟之间的深刻联系。除了新的利布 - 罗宾逊界之外,我们的分析还给出了哈阿量子模拟算法在用于模拟幂律衰减相互作用时的误差界。特别地,我们表明当> 3(其中是维度数)时,该算法的门计数与系统大小的比例关系比现有算法更好。