Suppr超能文献

制定用于确定网络健康信息可信度的质量基准——一种金标准方法的方案

Developing a Quality Benchmark for Determining the Credibility of Web Health Information- a Protocol of a Gold Standard Approach.

作者信息

Daraz Lubna, Bouseh Sheila

机构信息

School of Library and Information Science, Faculty of Arts and Sciences, University of Montreal, Montreal, QC, Canada.

出版信息

Front Digit Health. 2021 Dec 23;3:801204. doi: 10.3389/fdgth.2021.801204. eCollection 2021.

Abstract

The current pandemic of COVID-19 has changed the way health information is distributed through online platforms. These platforms have played a significant role in informing patients and the public with knowledge that has changed the virtual world forever. Simultaneously, there are growing concerns that much of the information is not credible, impacting patient health outcomes, causing human lives, and tremendous resource waste. With the increasing use of online platforms, patients/the public require new learning models and sharing medical knowledge. They need to be empowered with strategies to navigate disinformation on online platforms. To meet the urgent need to combat health "misinformation," the research team proposes a structured approach to develop a quality benchmark, an evidence-based tool that identifies and addresses the determinants of online health information reliability. The specific methods to develop the intervention are the following: (1) systematic reviews: two comprehensive systematic reviews to understand the current state of the quality of online health information and to identify research gaps, (2) content analysis: develop a conceptual framework based on established and complementary knowledge translation approaches for analyzing the existing quality assessment tools and draft a unique set of quality of domains, (3) focus groups: multiple focus groups with diverse patients/the public and health information providers to test the acceptability and usability of the quality domains, (4) development and evaluation: a unique set of determinants of reliability will be finalized along with a preferred scoring classification. These items will be used to develop and validate a quality benchmark to assess the quality of online health information. This multi-phase project informed by theory will lead to new knowledge that is intended to inform the development of a patient-friendly quality benchmark. This benchmark will inform best practices and policies in disseminating reliable web health information, thus reducing disparities in access to health knowledge and combat misinformation online. In addition, we envision the final product can be used as a gold standard for developing similar interventions for specific groups of patients or populations.

摘要

当前的新冠疫情改变了健康信息通过在线平台传播的方式。这些平台在向患者和公众提供知识方面发挥了重要作用,这些知识永远改变了虚拟世界。与此同时,人们越来越担心许多信息不可信,这影响了患者的健康结果,造成了人员伤亡和巨大的资源浪费。随着在线平台使用的增加,患者/公众需要新的学习模式和医学知识共享方式。他们需要具备应对在线平台虚假信息的策略。为满足对抗健康“错误信息”的迫切需求,研究团队提出了一种结构化方法,以制定一个质量基准,这是一种基于证据的工具,用于识别和解决在线健康信息可靠性的决定因素。开发该干预措施的具体方法如下:(1)系统评价:进行两项全面的系统评价,以了解在线健康信息质量的现状并识别研究差距;(2)内容分析:基于既定的和互补的知识转化方法开发一个概念框架,用于分析现有的质量评估工具,并起草一套独特的质量领域;(3)焦点小组:与不同的患者/公众和健康信息提供者进行多个焦点小组讨论,以测试质量领域的可接受性和可用性;(4)开发与评估:将最终确定一套独特的可靠性决定因素以及一个首选的评分分类。这些项目将用于开发和验证一个质量基准,以评估在线健康信息的质量。这个由理论指导的多阶段项目将产生新的知识,旨在为制定一个对患者友好的质量基准提供信息。这个基准将为传播可靠的网络健康信息的最佳实践和政策提供信息,从而减少获取健康知识方面的差距并对抗在线错误信息。此外,我们设想最终产品可作为为特定患者群体或人群开发类似干预措施的黄金标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验