Suppr超能文献

脑癌磁共振波谱的自动采集规划

Automated Acquisition Planning for Magnetic Resonance Spectroscopy in Brain Cancer.

作者信息

Bolan Patrick J, Branzoli Francesca, Di Stefano Anna Luisa, Nichelli Lucia, Valabregue Romain, Saunders Sara L, Akçakaya Mehmet, Sanson Marc, Lehéricy Stéphane, Marjańska Małgorzata

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA.

Institut du Cerveau - ICM, Centre de NeuroImagerie de Recherche - CENIR, Paris, France.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12267:730-739. doi: 10.1007/978-3-030-59728-3_71. Epub 2020 Sep 29.

Abstract

In vivo magnetic resonance spectroscopy (MRS) can provide clinically valuable metabolic information from brain tumors that can be used for prognosis and monitoring response to treatment. Unfortunately, this technique has not been widely adopted in clinical practice or even clinical trials due to the difficulty in acquiring and analyzing the data. In this work we propose a computational approach to solve one of the most critical technical challenges: the problem of quickly and accurately positioning an MRS volume of interest (a voxel) inside a tumor using MR images for guidance. The proposed automated method comprises a convolutional neural network to segment the lesion, followed by a discrete optimization to position an MRS voxel optimally within the lesion. In a retrospective comparison, the novel automated method is shown to provide improved lesion coverage compared to manual voxel placement.

摘要

体内磁共振波谱成像(MRS)能够从脑肿瘤中提供具有临床价值的代谢信息,这些信息可用于预后评估和治疗反应监测。遗憾的是,由于数据采集和分析的困难,这项技术在临床实践甚至临床试验中都未得到广泛应用。在这项工作中,我们提出了一种计算方法来解决最关键的技术挑战之一:利用磁共振图像进行引导,快速准确地在肿瘤内定位MRS感兴趣体积(一个体素)的问题。所提出的自动化方法包括一个用于分割病变的卷积神经网络,随后进行离散优化,以便在病变内最优地定位MRS体素。在一项回顾性比较中,与手动放置体素相比,新的自动化方法显示出能提供更好的病变覆盖。

相似文献

1
Automated Acquisition Planning for Magnetic Resonance Spectroscopy in Brain Cancer.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:730-739. doi: 10.1007/978-3-030-59728-3_71. Epub 2020 Sep 29.
2
Real-Time Semi-Automated and Automated Voxel Placement using fMRI Targets for Repeated Acquisition Magnetic Resonance Spectroscopy.
J Neurosci Methods. 2023 May 15;392:109853. doi: 10.1016/j.jneumeth.2023.109853. Epub 2023 Apr 7.
4
A New Optimized Thresholding Method Using Ant Colony Algorithm for MR Brain Image Segmentation.
J Digit Imaging. 2019 Feb;32(1):162-174. doi: 10.1007/s10278-018-0111-x.
5
A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.
Comput Methods Programs Biomed. 2017 Jun;144:77-96. doi: 10.1016/j.cmpb.2017.03.011. Epub 2017 Mar 19.
6
8
Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection.
J Neurosurg. 2016 Jun;124(6):1585-93. doi: 10.3171/2015.6.JNS142651. Epub 2015 Dec 4.
9
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24.
10
Effect of voxel position on single-voxel MR spectroscopy findings.
AJNR Am J Neuroradiol. 2000 Feb;21(2):367-74.

引用本文的文献

1
Incorporation of Edited MRS into Clinical Practice May Improve Care of Patients with -Mutant Glioma.
AJNR Am J Neuroradiol. 2025 Jan 8;46(1):113-120. doi: 10.3174/ajnr.A8413.

本文引用的文献

1
AutoVOI: real-time automatic prescription of volume-of-interest for single voxel spectroscopy.
Magn Reson Med. 2018 Nov;80(5):1787-1798. doi: 10.1002/mrm.27203. Epub 2018 Apr 6.
5
Combined IDH1 mutation and MGMT methylation status on long-term survival of patients with cerebral low-grade glioma.
Clin Neurol Neurosurg. 2015 Nov;138:37-44. doi: 10.1016/j.clineuro.2015.07.019. Epub 2015 Jul 31.
6
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
9
10
Brain dynamic neurochemical changes in dystonic patients: a magnetic resonance spectroscopy study.
Mov Disord. 2013 Feb;28(2):201-9. doi: 10.1002/mds.25279. Epub 2012 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验