Bolan Patrick J, Branzoli Francesca, Di Stefano Anna Luisa, Nichelli Lucia, Valabregue Romain, Saunders Sara L, Akçakaya Mehmet, Sanson Marc, Lehéricy Stéphane, Marjańska Małgorzata
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis MN, USA.
Institut du Cerveau - ICM, Centre de NeuroImagerie de Recherche - CENIR, Paris, France.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:730-739. doi: 10.1007/978-3-030-59728-3_71. Epub 2020 Sep 29.
In vivo magnetic resonance spectroscopy (MRS) can provide clinically valuable metabolic information from brain tumors that can be used for prognosis and monitoring response to treatment. Unfortunately, this technique has not been widely adopted in clinical practice or even clinical trials due to the difficulty in acquiring and analyzing the data. In this work we propose a computational approach to solve one of the most critical technical challenges: the problem of quickly and accurately positioning an MRS volume of interest (a voxel) inside a tumor using MR images for guidance. The proposed automated method comprises a convolutional neural network to segment the lesion, followed by a discrete optimization to position an MRS voxel optimally within the lesion. In a retrospective comparison, the novel automated method is shown to provide improved lesion coverage compared to manual voxel placement.
体内磁共振波谱成像(MRS)能够从脑肿瘤中提供具有临床价值的代谢信息,这些信息可用于预后评估和治疗反应监测。遗憾的是,由于数据采集和分析的困难,这项技术在临床实践甚至临床试验中都未得到广泛应用。在这项工作中,我们提出了一种计算方法来解决最关键的技术挑战之一:利用磁共振图像进行引导,快速准确地在肿瘤内定位MRS感兴趣体积(一个体素)的问题。所提出的自动化方法包括一个用于分割病变的卷积神经网络,随后进行离散优化,以便在病变内最优地定位MRS体素。在一项回顾性比较中,与手动放置体素相比,新的自动化方法显示出能提供更好的病变覆盖。