Suppr超能文献

基于人工智能参数和 CT 征象识别早期肺腺癌的病理亚型。

Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs.

机构信息

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.

出版信息

Biosci Rep. 2022 Jan 28;42(1). doi: 10.1042/BSR20212416.

Abstract

OBJECTIVE

To explore the value of quantitative parameters of artificial intelligence (AI) and computed tomography (CT) signs in identifying pathological subtypes of lung adenocarcinoma appearing as ground-glass nodules (GGNs).

METHODS

CT images of 224 GGNs from 210 individuals were collected retrospectively and classified into atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) groups. AI was used to identify GGNs and to obtain quantitative parameters, and CT signs were recognized manually. The mixed predictive model based on logistic multivariate regression was built and evaluated.

RESULTS

Of the 224 GGNs, 55, 93, and 76 were AAH/AIS, MIA, and IAC, respectively. In terms of AI parameters, from AAH/AIS to MIA, and IAC, there was a gradual increase in two-dimensional mean diameter, three-dimensional mean diameter, mean CT value, maximum CT value, and volume of GGNs (all P<0.0001). Except for the CT signs of the location, and the tumor-lung interface, there were significant differences among the three groups in the density, shape, vacuolar signs, air bronchogram, lobulation, spiculation, pleural indentation, and vascular convergence signs (all P<0.05). The areas under the curve (AUC) of predictive model 1 for identifying the AAH/AIS and MIA and model 2 for identifying MIA and IAC were 0.779 and 0.918, respectively, which were greater than the quantitative parameters independently (all P<0.05).

CONCLUSION

AI parameters are valuable for identifying subtypes of early lung adenocarcinoma and have improved diagnostic efficacy when combined with CT signs.

摘要

目的

探讨人工智能(AI)和计算机断层扫描(CT)定量参数在识别表现为磨玻璃结节(GGN)的肺腺癌病理亚型中的价值。

方法

回顾性收集 210 例 224 个 GGN 的 CT 图像,分为不典型腺瘤样增生(AAH)/原位腺癌(AIS)、微浸润腺癌(MIA)和浸润性腺癌(IAC)组。使用 AI 识别 GGN 并获取定量参数,手动识别 CT 征象。建立并评估基于逻辑多元回归的混合预测模型。

结果

224 个 GGN 中,55、93 和 76 个分别为 AAH/AIS、MIA 和 IAC。在 AI 参数方面,从 AAH/AIS 到 MIA 和 IAC,GGN 的二维平均直径、三维平均直径、平均 CT 值、最大 CT 值和体积逐渐增大(均 P<0.0001)。除了位置和肿瘤-肺界面的 CT 征象外,三组之间在密度、形状、空泡征、空气支气管征、分叶征、毛刺征、胸膜凹陷征和血管汇聚征方面存在显著差异(均 P<0.05)。预测模型 1 识别 AAH/AIS 和 MIA 以及模型 2 识别 MIA 和 IAC 的曲线下面积(AUC)分别为 0.779 和 0.918,均大于独立定量参数(均 P<0.05)。

结论

AI 参数对识别早期肺腺癌亚型具有重要价值,与 CT 征象相结合可提高诊断效能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6a2/8766821/dd7ae4ddd544/bsr-42-bsr20212416-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验