Suppr超能文献

[CT定量参数在预测肺磨玻璃结节病理类型中的价值]

[Value of CT Quantitative Parameters in Prediction of Pathological Types
of Lung Ground Glass Nodules].

作者信息

Shi Yiqiu, Shen Yuwen, Chen Jie, Yan Wanying, Liu Kefu

机构信息

Department of Radiology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 
Suzhou 215008, China.

Infervision Medical Technology Co., Ltd, Beijing 100020, China.

出版信息

Zhongguo Fei Ai Za Zhi. 2024 Feb 20;27(2):118-125. doi: 10.3779/j.issn.1009-3419.2024.102.09.

Abstract

BACKGROUND

The pathological types of lung ground glass nodules (GGNs) show great significance to the clinical treatment. This study was aimed to predict pathological types of GGNs based on computed tomography (CT) quantitative parameters.

METHODS

389 GGNs confirmed by postoperative pathology were selected, including 138 cases of precursor glandular lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], 109 cases of microinvasive adenocarcinoma (MIA) and 142 cases of invasive adenocarcinoma (IAC). The morphological characteristics of nodules were evaluated subjectively by radiologist, as well as artificial intelligence (AI).

RESULTS

In the subjective CT signs, the maximum diameter of nodule and the frequency of spiculation, lobulation and pleural traction increased from AAH+AIS, MIA to IAC. In the AI quantitative parameters, parameters related to size and CT value, proportion of solid component, energy and entropy increased from AAH+AIS, MIA to IAC. There was no significant difference between AI quantitative parameters and the subjective CT signs for distinguishing the pathological types of GGNs.

CONCLUSIONS

AI quantitative parameters were valuable in distinguishing the pathological types of GGNs.

摘要

背景

肺磨玻璃结节(GGN)的病理类型对临床治疗具有重要意义。本研究旨在基于计算机断层扫描(CT)定量参数预测GGN的病理类型。

方法

选取389例经术后病理证实的GGN,其中包括138例前驱腺性病变[非典型腺瘤样增生(AAH)和原位腺癌(AIS)]、109例微浸润腺癌(MIA)和142例浸润性腺癌(IAC)。由放射科医生以及人工智能(AI)主观评估结节的形态特征。

结果

在主观CT征象中,结节的最大直径以及毛刺征、分叶征和胸膜牵拉征的出现频率从AAH+AIS、MIA到IAC逐渐增加。在AI定量参数中,与大小和CT值、实性成分比例、能量和熵相关的参数从AAH+AIS、MIA到IAC逐渐增加。在区分GGN病理类型方面,AI定量参数与主观CT征象之间无显著差异。

结论

AI定量参数在区分GGN病理类型方面具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac7f/10918243/83f832ded4d4/img_1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验