Shi Yiqiu, Shen Yuwen, Chen Jie, Yan Wanying, Liu Kefu
Department of Radiology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China.
Infervision Medical Technology Co., Ltd, Beijing 100020, China.
Zhongguo Fei Ai Za Zhi. 2024 Feb 20;27(2):118-125. doi: 10.3779/j.issn.1009-3419.2024.102.09.
The pathological types of lung ground glass nodules (GGNs) show great significance to the clinical treatment. This study was aimed to predict pathological types of GGNs based on computed tomography (CT) quantitative parameters.
389 GGNs confirmed by postoperative pathology were selected, including 138 cases of precursor glandular lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], 109 cases of microinvasive adenocarcinoma (MIA) and 142 cases of invasive adenocarcinoma (IAC). The morphological characteristics of nodules were evaluated subjectively by radiologist, as well as artificial intelligence (AI).
In the subjective CT signs, the maximum diameter of nodule and the frequency of spiculation, lobulation and pleural traction increased from AAH+AIS, MIA to IAC. In the AI quantitative parameters, parameters related to size and CT value, proportion of solid component, energy and entropy increased from AAH+AIS, MIA to IAC. There was no significant difference between AI quantitative parameters and the subjective CT signs for distinguishing the pathological types of GGNs.
AI quantitative parameters were valuable in distinguishing the pathological types of GGNs.
肺磨玻璃结节(GGN)的病理类型对临床治疗具有重要意义。本研究旨在基于计算机断层扫描(CT)定量参数预测GGN的病理类型。
选取389例经术后病理证实的GGN,其中包括138例前驱腺性病变[非典型腺瘤样增生(AAH)和原位腺癌(AIS)]、109例微浸润腺癌(MIA)和142例浸润性腺癌(IAC)。由放射科医生以及人工智能(AI)主观评估结节的形态特征。
在主观CT征象中,结节的最大直径以及毛刺征、分叶征和胸膜牵拉征的出现频率从AAH+AIS、MIA到IAC逐渐增加。在AI定量参数中,与大小和CT值、实性成分比例、能量和熵相关的参数从AAH+AIS、MIA到IAC逐渐增加。在区分GGN病理类型方面,AI定量参数与主观CT征象之间无显著差异。
AI定量参数在区分GGN病理类型方面具有重要价值。