Suppr超能文献

卷积神经网络人工智能工具预测肺结节良恶性的外部验证。

External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules.

机构信息

Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham, UK

Radiology, Churchill Hospital, Oxford, UK.

出版信息

Thorax. 2020 Apr;75(4):306-312. doi: 10.1136/thoraxjnl-2019-214104. Epub 2020 Mar 5.

Abstract

BACKGROUND

Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI algorithm, the lung cancer prediction convolutional neural network (LCP-CNN), with that of the Brock University model, recommended in UK guidelines.

METHODS

A dataset of incidentally detected pulmonary nodules measuring 5-15 mm was collected retrospectively from three UK hospitals for use in a validation study. Ground truth diagnosis for each nodule was based on histology (required for any cancer), resolution, stability or (for pulmonary lymph nodes only) expert opinion. There were 1397 nodules in 1187 patients, of which 234 nodules in 229 (19.3%) patients were cancer. Model discrimination and performance statistics at predefined score thresholds were compared between the Brock model and the LCP-CNN.

RESULTS

The area under the curve for LCP-CNN was 89.6% (95% CI 87.6 to 91.5), compared with 86.8% (95% CI 84.3 to 89.1) for the Brock model (p≤0.005). Using the LCP-CNN, we found that 24.5% of nodules scored below the lowest cancer nodule score, compared with 10.9% using the Brock score. Using the predefined thresholds, we found that the LCP-CNN gave one false negative (0.4% of cancers), whereas the Brock model gave six (2.5%), while specificity statistics were similar between the two models.

CONCLUSION

The LCP-CNN score has better discrimination and allows a larger proportion of benign nodules to be identified without missing cancers than the Brock model. This has the potential to substantially reduce the proportion of surveillance CT scans required and thus save significant resources.

摘要

背景

在 CT 检测到的肺结节中,恶性肿瘤风险的评估是临床管理的核心。人工智能(AI)的应用提供了改善风险预测的机会。在这里,我们比较了一种 AI 算法,肺癌预测卷积神经网络(LCP-CNN),和英国指南推荐的 Brock 大学模型的性能。

方法

我们从三家英国医院回顾性地收集了一个直径为 5-15 毫米的偶然发现的肺结节数据集,用于验证研究。每个结节的真实诊断是基于组织学(任何癌症都需要)、分辨率、稳定性或(仅适用于肺淋巴结)专家意见。共有 1187 名患者的 1397 个结节,其中 229 名(19.3%)患者的 234 个结节为癌症。比较了 Brock 模型和 LCP-CNN 之间在预设评分阈值下的模型区分度和性能统计数据。

结果

LCP-CNN 的曲线下面积为 89.6%(95%置信区间 87.6 至 91.5),而 Brock 模型为 86.8%(95%置信区间 84.3 至 89.1)(p≤0.005)。使用 LCP-CNN,我们发现 24.5%的结节评分低于最低癌症结节评分,而使用 Brock 评分则为 10.9%。使用预设的阈值,我们发现 LCP-CNN 有一个假阴性(0.4%的癌症),而 Brock 模型有六个(2.5%),而两个模型的特异性统计数据相似。

结论

LCP-CNN 评分具有更好的区分能力,与 Brock 模型相比,可以识别更多的良性结节,而不会漏诊癌症。这有可能大大减少所需的监测 CT 扫描的比例,从而节省大量资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af37/7231457/3ec3f570f5d3/thoraxjnl-2019-214104f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验