Suppr超能文献

髋关节镜治疗股骨髋臼撞击综合征的术前患者因素与临床有意义的结局的相关性:机器学习分析。

Association Between Preoperative Patient Factors and Clinically Meaningful Outcomes After Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis.

机构信息

Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA.

University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

出版信息

Am J Sports Med. 2022 Mar;50(3):746-756. doi: 10.1177/03635465211067546. Epub 2022 Jan 10.

Abstract

BACKGROUND

The International Hip Outcome Tool 12-Item Questionnaire (IHOT-12) has been proposed as a more appropriate outcome assessment for hip arthroscopy populations. The extent to which preoperative patient factors predict achieving clinically meaningful outcomes among patients undergoing hip arthroscopy for femoroacetabular impingement syndrome (FAIS) remains poorly understood.

PURPOSE

To determine the predictive relationship of preoperative imaging, patient-reported outcome measures, and patient demographics with achievement of the minimal clinically important difference (MCID), Patient Acceptable Symptom State (PASS), and substantial clinical benefit (SCB) for the IHOT-12 at a minimum of 2 years postoperatively.

STUDY DESIGN

Case-control study; Level of evidence, 3.

METHODS

Data were analyzed for consecutive patients who underwent hip arthroscopy for FAIS between 2012 and 2018 and completed the IHOT-12 preoperatively and at a minimum of 2 years postoperatively. Fifteen novel machine learning algorithms were developed using 47 potential demographic, clinical, and radiographic predictors. Model performance was evaluated with discrimination, calibration, decision-curve analysis and the brier score.

RESULTS

A total of 859 patients were identified, with 685 (79.7%) achieving the MCID, 535 (62.3%) achieving the PASS, and 498 (58.0%) achieving the SCB. For predicting the MCID, discrimination for the best-performing models ranged from fair to excellent (area under the curve [AUC], 0.69-0.89), although calibration was excellent (calibration intercept and slopes: -0.06 to 0.02 and 0.24 to 0.85, respectively). For predicting the PASS, discrimination for the best-performing models ranged from fair to excellent (AUC, 0.63-0.81), with excellent calibration (calibration intercept and slopes: 0.03-0.18 and 0.52-0.90, respectively). For predicting the SCB, discrimination for the best-performing models ranged from fair to good (AUC, 0.61-0.77), with excellent calibration (calibration intercept and slopes: -0.08 to 0.00 and 0.56 to 1.02, respectively). Thematic predictors for failing to achieve the MCID, PASS, and SCB were presence of back pain, anxiety/depression, chronic symptom duration, preoperative hip injections, and increasing body mass index (BMI). Specifically, thresholds associated with lower likelihood to achieve a clinically meaningful outcome were preoperative Hip Outcome Score-Activities of Daily Living <55, preoperative Hip Outcome Score-Sports Subscale >55.6, preoperative IHOT-12 score ≥48.5, preoperative modified Harris Hip Score ≤51.7, age >41 years, BMI ≥27, and preoperative α angle >76.6°.

CONCLUSION

We developed novel machine learning algorithms that leveraged preoperative demographic, clinical, and imaging-based features to reliably predict clinically meaningful improvement after hip arthroscopy for FAIS. Despite consistent improvements after hip arthroscopy, meaningful improvements are negatively influenced by greater BMI, back pain, chronic symptom duration, preoperative mental health, and use of hip corticosteroid injections.

摘要

背景

国际髋关节结局工具 12 项问卷(IHOT-12)已被提议作为髋关节镜检查人群更合适的结果评估方法。对于患有股骨髋臼撞击综合征(FAIS)而行髋关节镜检查的患者,术前患者因素在多大程度上预测达到临床有意义的结果仍知之甚少。

目的

确定术前影像学、患者报告的结果测量和患者人口统计学因素与 IHOT-12 达到最小临床重要差异(MCID)、患者可接受症状状态(PASS)和实质性临床获益(SCB)的预测关系,术后至少 2 年。

研究设计

病例对照研究;证据水平,3 级。

方法

分析了 2012 年至 2018 年间接受 FAIS 髋关节镜检查且术前和术后至少 2 年完成 IHOT-12 的连续患者的数据。使用 47 个潜在的人口统计学、临床和影像学预测因子开发了 15 种新的机器学习算法。使用判别、校准、决策曲线分析和 Brier 评分评估模型性能。

结果

共确定了 859 例患者,其中 685 例(79.7%)达到 MCID,535 例(62.3%)达到 PASS,498 例(58.0%)达到 SCB。对于预测 MCID,最佳性能模型的判别范围从一般到良好(曲线下面积[AUC],0.69-0.89),尽管校准效果良好(校准截距和斜率分别为-0.06 至 0.02 和 0.24 至 0.85)。对于预测 PASS,最佳性能模型的判别范围从一般到良好(AUC,0.63-0.81),校准效果良好(校准截距和斜率分别为 0.03-0.18 和 0.52-0.90)。对于预测 SCB,最佳性能模型的判别范围从一般到良好(AUC,0.61-0.77),校准效果良好(校准截距和斜率分别为-0.08 至 0.00 和 0.56 至 1.02)。未能达到 MCID、PASS 和 SCB 的主题预测因素包括背痛、焦虑/抑郁、慢性症状持续时间、术前髋关节注射和 BMI 增加。具体而言,与临床有意义的结果可能性降低相关的阈值包括术前髋关节功能评分-日常生活活动<55、术前髋关节功能评分-运动亚量表>55.6、术前 IHOT-12 评分≥48.5、术前改良 Harris 髋关节评分≤51.7、年龄>41 岁、BMI≥27 和术前α角>76.6°。

结论

我们开发了新的机器学习算法,利用术前的人口统计学、临床和影像学特征来可靠地预测髋关节镜检查治疗 FAIS 后的临床显著改善。尽管髋关节镜检查后有持续的改善,但更大的 BMI、背痛、慢性症状持续时间、术前心理健康状况以及使用髋关节皮质类固醇注射会对有意义的改善产生负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验