文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较转录组分析揭示了疟疾小鼠模型中与翻译相关的过程。

Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria.

机构信息

Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom.

Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.

出版信息

Elife. 2022 Jan 10;11:e70763. doi: 10.7554/eLife.70763.


DOI:10.7554/eLife.70763
PMID:35006075
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8747512/
Abstract

Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.

摘要

最近的一些举措旨在提高将动物模型研究结果转化为人类疾病的能力,这些举措的重点是提高可重复性,但量化动物模型的相关性仍然是一个挑战。在这里,我们使用血液比较转录组学来评估不同临床表现的疟疾患者与五种常用的小鼠模型之间的全身性宿主反应及其一致性。17XL 感染小鼠最能重现主要人类严重疟疾综合征中所见的基因表达变化特征,同时伴有高寄生虫生物量、严重贫血、高乳酸血症和脑微血管病理学。然而,不同宿主物种之间以及所有模型之间的基因表达变化也存在很大的不一致性,这表明在进行实验之前,应该评估每个模型中感兴趣的生物学机制的相关性。这些数据将有助于选择适合转化性疟疾研究的模型,并且这种方法可以推广到其他疾病模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/0c81421c29ab/elife-70763-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/59337e82cc3f/elife-70763-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/2a0b8231f308/elife-70763-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/94485fbde959/elife-70763-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/a5bc362a30ae/elife-70763-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/8407a66da020/elife-70763-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/97d76bd16677/elife-70763-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/b647b824a8a7/elife-70763-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/317266b02272/elife-70763-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/4c111e1171fc/elife-70763-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/dc62c3f59907/elife-70763-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/6977e933dce0/elife-70763-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/cecc324cba11/elife-70763-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/1855de69da32/elife-70763-fig3-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/9019fc124711/elife-70763-fig3-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/166974512306/elife-70763-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/10f8a98e80ad/elife-70763-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/e029b50ce488/elife-70763-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/0ceed63413b4/elife-70763-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/41cf026db178/elife-70763-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/0c81421c29ab/elife-70763-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/59337e82cc3f/elife-70763-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/2a0b8231f308/elife-70763-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/94485fbde959/elife-70763-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/a5bc362a30ae/elife-70763-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/8407a66da020/elife-70763-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/97d76bd16677/elife-70763-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/b647b824a8a7/elife-70763-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/317266b02272/elife-70763-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/4c111e1171fc/elife-70763-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/dc62c3f59907/elife-70763-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/6977e933dce0/elife-70763-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/cecc324cba11/elife-70763-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/1855de69da32/elife-70763-fig3-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/9019fc124711/elife-70763-fig3-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/166974512306/elife-70763-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/10f8a98e80ad/elife-70763-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/e029b50ce488/elife-70763-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/0ceed63413b4/elife-70763-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/41cf026db178/elife-70763-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11f/8747512/0c81421c29ab/elife-70763-fig5.jpg

相似文献

[1]
Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria.

Elife. 2022-1-10

[2]
Signatures of malaria-associated pathology revealed by high-resolution whole-blood transcriptomics in a rodent model of malaria.

Sci Rep. 2017-2-3

[3]
Comparative histopathology of mice infected with the 17XL and 17XNL strains of Plasmodium yoelii.

J Parasitol. 2012-4

[4]
Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions.

Microbiol Mol Biol Rev. 2018-4-25

[5]
Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites.

Cell Host Microbe. 2018-3-1

[6]
Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies.

EBioMedicine. 2019-9-11

[7]
Genome sequences reveal divergence times of malaria parasite lineages.

Parasitology. 2010-12-1

[8]
Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria.

Sci Transl Med. 2018-6-27

[9]
Evolution of Host Specificity by Malaria Parasites through Altered Mechanisms Controlling Genome Maintenance.

mBio. 2020-3-17

[10]
Genome-wide liver transcriptomic profiling of a malaria mouse model reveals disturbed immune and metabolic responses.

Parasit Vectors. 2023-1-30

引用本文的文献

[1]
Effect of Chronic Stress on Whole Blood Transcriptome: A Meta-Analysis of Publicly Available Datasets from Rodent Models.

bioRxiv. 2025-6-1

[2]
The microbiota, the malarial parasite, and the mice-a three-sided relationship.

Front Microbiol. 2025-6-4

[3]
A single workflow for multi-species blood transcriptomics.

BMC Genomics. 2024-3-16

[4]
Gene expression analyses reveal differences in children's response to malaria according to their age.

Nat Commun. 2024-3-6

[5]
The malarial blood transcriptome: translational applications.

Biochem Soc Trans. 2024-4-24

[6]
Gene expression analyses reveal differences in children's response to malaria according to their age.

bioRxiv. 2023-10-26

[7]
Pathogenetic mechanisms and treatment targets in cerebral malaria.

Nat Rev Neurol. 2023-11

[8]
Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis.

iScience. 2023-9-15

[9]
Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis.

Sci Rep. 2023-4-1

本文引用的文献

[1]
Oxidative Stress and Pathogenesis in Malaria.

Front Cell Infect Microbiol. 2021

[2]
Localised release of matrix metallopeptidase 8 in fatal cerebral malaria.

Clin Transl Immunology. 2021-4-29

[3]
Inducible mechanisms of disease tolerance provide an alternative strategy of acquired immunity to malaria.

Elife. 2021-3-23

[4]
Mapping immune variation and gene switching in naive hosts infected with .

Elife. 2021-3-2

[5]
Type I Interferons and Malaria: A Double-Edge Sword Against a Complex Parasitic Disease.

Front Cell Infect Microbiol. 2020

[6]
Testing the impact of a single nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor on experimental cerebral malaria in mice.

Sci Rep. 2020-8-12

[7]
The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.

BMC Vet Res. 2020-7-14

[8]
CD8+ T cells target cerebrovasculature in children with cerebral malaria.

J Clin Invest. 2020-3-2

[9]
New Insights into Malaria Pathogenesis.

Annu Rev Pathol. 2019-10-24

[10]
Neutrophil extracellular traps drive inflammatory pathogenesis in malaria.

Sci Immunol. 2019-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索