Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
J Bacteriol. 2022 Mar 15;204(3):e0053921. doi: 10.1128/JB.00539-21. Epub 2022 Jan 10.
DNA replication forks regularly encounter lesions or other impediments that result in a blockage to fork progression. PriA is one of the key proteins used by virtually all eubacteria to survive conditions that result in a blockage to replication fork movement. PriA directly binds stalled replication forks and initiates fork restart allowing for chromosomes to be fully duplicated under stressful conditions. We used a CRISPR-Cas gene editing approach to map PriA residues critical for surviving DNA damage induced by several antibiotics in B. subtilis. We find that the winged helix (WH) domain in B. subtilis PriA is critical for surviving DNA damage and participates in DNA binding. The important function of the WH domain mapped to distinct surfaces that were also conserved among several Gram-positive human pathogens. In addition, we identified an amino acid linker neighboring the WH domain that is greatly extended in B. subtilis due to an insertion. Shortening this linker induced a hypersensitive phenotype to DNA damage, suggesting that its extended length is critical for efficient replication fork restart . Because the WH domain is dispensable in E. coli PriA, our findings demonstrate an important difference in the contribution of the WH domain during fork restart in B. subtilis. Furthermore, with our results we suggest that this highly variable region in PriA could provide different functions across diverse bacterial organisms. PriA is an important protein found in virtually all bacteria that recognizes stalled replication forks orchestrating fork restart. PriA homologs contain a winged helix (WH) domain. The E. coli PriA WH domain is dispensable and functions in a fork restart pathway that is not conserved outside of E. coli and closely related proteobacteria. We analyzed the importance of the WH domain and an associated linker in B. subtilis and found that both are critical for surviving DNA damage. This function mapped to a small motif at the C-terminal end of the WH domain, which is also conserved in pathogenic bacteria. The motif was not required for DNA binding and therefore may perform a novel function in the replication fork restart pathway.
DNA 复制叉经常遇到导致叉前进受阻的损伤或其他障碍物。PriA 是几乎所有真细菌用来在导致复制叉运动受阻的条件下存活的关键蛋白之一。PriA 直接结合停滞的复制叉,并启动叉重启动,从而使染色体在应激条件下完全复制。我们使用 CRISPR-Cas 基因编辑方法来绘制 PriA 残基,这些残基对于在枯草芽孢杆菌中生存由几种抗生素引起的 DNA 损伤至关重要。我们发现,枯草芽孢杆菌 PriA 的翼状螺旋(WH)结构域对于生存 DNA 损伤很重要,并参与 DNA 结合。该 WH 结构域的重要功能映射到几个革兰氏阳性人类病原体之间也保守的不同表面上。此外,我们还确定了 WH 结构域附近的氨基酸接头,由于插入,该接头在枯草芽孢杆菌中大大延长。缩短该接头会导致对 DNA 损伤的超敏表型,这表明其延长长度对于有效复制叉重启动至关重要。由于 E. coli PriA 中的 WH 结构域是可有可无的,因此我们的发现表明,在枯草芽孢杆菌中,WH 结构域在叉重启动过程中的贡献存在重要差异。此外,根据我们的结果,我们认为 PriA 中的这个高度可变区域可以在不同的细菌生物中提供不同的功能。PriA 是一种几乎存在于所有细菌中的重要蛋白,它可以识别停滞的复制叉,协调叉重启动。PriA 同源物包含一个翼状螺旋(WH)结构域。大肠杆菌 PriA 的 WH 结构域是可有可无的,并且在大肠杆菌和密切相关的变形菌以外的途径中不起作用,该途径在大肠杆菌和密切相关的变形菌以外的途径中并不保守。我们分析了 WH 结构域和相关接头在枯草芽孢杆菌中的重要性,发现它们对于生存 DNA 损伤都至关重要。该功能映射到 WH 结构域的 C 末端的一个小基序,该基序在病原细菌中也保守。该基序不需要 DNA 结合,因此可能在复制叉重启动途径中具有新的功能。