IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):238-255. doi: 10.1109/TCBB.2022.3141697. Epub 2023 Feb 3.
Lung cancer is a major cause of cancer deaths worldwide, and has a very low survival rate. Non-small cell lung cancer (NSCLC) is the largest subset of lung cancers, which accounts for about 85% of all cases. It has been well established that a mutation in the epidermal growth factor receptor (EGFR) can lead to lung cancer. EGFR Tyrosine Kinase Inhibitors (TKIs) are developed to target the kinase domain of EGFR. These TKIs produce promising results at the initial stage of therapy, but the efficacy becomes limited due to the development of drug resistance. In this paper, we provide a comprehensive overview of computational methods, for understanding drug resistance mechanisms. The important EGFR mutants and the different generations of EGFR-TKIs, with the survival and response rates are discussed. Next, we evaluate the role of important EGFR parameters in drug resistance mechanism, including structural dynamics, hydrogen bonds, stability, dimerization, binding free energies, and signaling pathways. Personalized drug resistance prediction models, drug response curve, drug synergy, and other data-driven methods are also discussed. Recent advancements in deep learning; such as AlphaFold2, deep generative models, big data analytics, and the applications of statistics and permutation are also highlighted. We explore limitations in the current methodologies, and discuss strategies to overcome them. We believe this review will serve as a reference for researchers; to apply computational techniques for precision medicine, analyzing structures of protein-drug complexes, drug discovery, and understanding the drug response and resistance mechanisms in lung cancer patients.
肺癌是全球癌症死亡的主要原因之一,其生存率非常低。非小细胞肺癌(NSCLC)是肺癌的最大亚型,约占所有病例的 85%。已经证实,表皮生长因子受体(EGFR)的突变可导致肺癌。EGFR 酪氨酸激酶抑制剂(TKI)的开发是为了针对 EGFR 的激酶结构域。这些 TKI 在治疗的初始阶段产生了有希望的结果,但由于耐药性的发展,疗效变得有限。在本文中,我们提供了一种全面的综述,介绍了用于理解耐药机制的计算方法。讨论了重要的 EGFR 突变体和不同代的 EGFR-TKIs,以及它们的生存率和反应率。接下来,我们评估了重要的 EGFR 参数在耐药机制中的作用,包括结构动力学、氢键、稳定性、二聚化、结合自由能和信号通路。还讨论了个性化耐药预测模型、药物反应曲线、药物协同作用和其他数据驱动方法。还强调了深度学习的最新进展,如 AlphaFold2、深度生成模型、大数据分析以及统计学和排列的应用。我们探讨了当前方法学的局限性,并讨论了克服这些局限性的策略。我们相信,这篇综述将为研究人员提供参考,以应用计算技术进行精准医学、分析蛋白-药物复合物的结构、药物发现以及理解肺癌患者的药物反应和耐药机制。