Suppr超能文献

可快速原型化的仿生蠕动生物反应器,能够实现剪切和多轴向应变的同时施加。

Rapid Prototypable Biomimetic Peristalsis Bioreactor Capable of Concurrent Shear and Multi-Axial Strain.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.

Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, College Station, Texas, USA.

出版信息

Cells Tissues Organs. 2023;212(1):96-110. doi: 10.1159/000521752. Epub 2022 Jan 10.

Abstract

Peristalsis is a nuanced mechanical stimulus comprised of multi-axial strain (radial and axial strain) and shear stress. Forces associated with peristalsis regulate diverse biological functions including digestion, reproductive function, and urine dynamics. Given the central role peristalsis plays in physiology and pathophysiology, we were motivated to design a bioreactor capable of holistically mimicking peristalsis. We engineered a novel rotating screw-drive based design combined with a peristaltic pump, in order to deliver multi-axial strain and concurrent shear stress to a biocompatible polydimethylsiloxane (PDMS) membrane "wall." Radial indentation and rotation of the screw drive against the wall demonstrated multi-axial strain evaluated via finite element modeling. Experimental measurements of strain using piezoelectric strain resistors were in close alignment with model-predicted values (15.9 ± 4.2% vs. 15.2% predicted). Modeling of shear stress on the "wall" indicated a uniform velocity profile and a moderate shear stress of 0.4 Pa. Human mesenchymal stem cells (hMSCs) seeded on the PDMS "wall" and stimulated with peristalsis demonstrated dramatic changes in actin filament alignment, proliferation, and nuclear morphology compared to static controls, perfusion, or strain, indicating that hMSCs sensed and responded to peristalsis uniquely. Lastly, significant differences were observed in gene expression patterns of calponin, caldesmon, smooth muscle actin, and transgelin, corroborating the propensity of hMSCs toward myogenic differentiation in response to peristalsis. Collectively, our data suggest that the peristalsis bioreactor is capable of generating concurrent multi-axial strain and shear stress on a "wall." hMSCs experience peristalsis differently than perfusion or strain, resulting in changes in proliferation, actin fiber organization, smooth muscle actin expression, and genetic markers of differentiation. The peristalsis bioreactor device has broad utility in the study of development and disease in several organ systems.

摘要

蠕动是一种复杂的机械刺激,由多轴向应变(径向和轴向应变)和剪切应力组成。与蠕动相关的力调节着多种生物学功能,包括消化、生殖功能和尿液动力学。鉴于蠕动在生理学和病理生理学中的核心作用,我们设计了一种能够整体模拟蠕动的生物反应器。我们设计了一种新颖的旋转螺杆驱动设计,结合蠕动泵,以向生物相容性的聚二甲基硅氧烷(PDMS)膜“壁”提供多轴向应变和同时的剪切应力。通过有限元建模评估了螺杆驱动器对壁的径向压痕和旋转产生的多轴向应变。使用压电阻应变计进行应变的实验测量与模型预测值非常吻合(15.9±4.2%与预测的 15.2%)。对“壁”上的剪切应力进行建模表明存在均匀的速度分布和适度的剪切应力 0.4Pa。与静态对照、灌注或应变相比,在 PDMS“壁”上接种的人骨髓间充质干细胞(hMSCs)并受到蠕动刺激后,肌动蛋白丝排列、增殖和核形态发生了显著变化,表明 hMSCs 独特地感知和响应蠕动。最后,在钙调蛋白、钙调蛋白、平滑肌肌动蛋白和转胶蛋白的基因表达模式中观察到显著差异,这证实了 hMSCs 在响应蠕动时向肌源性分化的倾向。总的来说,我们的数据表明,蠕动生物反应器能够在“壁”上产生同时的多轴向应变和剪切应力。hMSCs 经历蠕动的方式与灌注或应变不同,导致增殖、肌动蛋白纤维组织、平滑肌肌动蛋白表达和分化的遗传标记发生变化。蠕动生物反应器设备在几个器官系统的发育和疾病研究中有广泛的应用。

相似文献

1
Rapid Prototypable Biomimetic Peristalsis Bioreactor Capable of Concurrent Shear and Multi-Axial Strain.
Cells Tissues Organs. 2023;212(1):96-110. doi: 10.1159/000521752. Epub 2022 Jan 10.
2
A bioreactor with an electro-responsive elastomeric membrane for mimicking intestinal peristalsis.
Bioinspir Biomim. 2016 Dec 5;12(1):016001. doi: 10.1088/1748-3190/12/1/016001.
3
Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.
Acta Biomater. 2017 Sep 1;59:200-209. doi: 10.1016/j.actbio.2017.07.012. Epub 2017 Jul 8.
5
Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit.
Cell Tissue Bank. 2019 Mar;20(1):25-34. doi: 10.1007/s10561-019-09749-8. Epub 2019 Jan 23.
6
Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.
J Tissue Eng Regen Med. 2018 Apr;12(4):e2039-e2050. doi: 10.1002/term.2635. Epub 2018 Jan 25.
9
Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering.
Proc Inst Mech Eng H. 2020 Dec;234(12):1397-1408. doi: 10.1177/0954411920944039. Epub 2020 Jul 21.
10
A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology.
Ann Biomed Eng. 2008 May;36(5):700-12. doi: 10.1007/s10439-008-9447-6. Epub 2008 Feb 6.

引用本文的文献

1
Endothelial cell Piezo1 promotes vascular smooth muscle cell differentiation on large arteries.
Eur J Cell Biol. 2025 Mar;104(1):151473. doi: 10.1016/j.ejcb.2024.151473. Epub 2024 Dec 20.
2
Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells.
Mol Cancer Res. 2025 Feb 6;23(2):128-142. doi: 10.1158/1541-7786.MCR-24-0624.
3
Advances in cancer mechanobiology: Metastasis, mechanics, and materials.
APL Bioeng. 2024 Mar 5;8(1):011502. doi: 10.1063/5.0186042. eCollection 2024 Mar.
4
Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer.
Cell Mol Bioeng. 2023 Aug 11;16(4):261-281. doi: 10.1007/s12195-023-00776-w. eCollection 2023 Aug.

本文引用的文献

1
Tissue engineered endometrial barrier exposed to peristaltic flow shear stresses.
APL Bioeng. 2020 Jun 2;4(2):026107. doi: 10.1063/5.0001994. eCollection 2020 Jun.
3
Biomechanics of Early Life in the Female Reproductive Tract.
Physiology (Bethesda). 2020 Mar 1;35(2):134-143. doi: 10.1152/physiol.00028.2019.
4
Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain.
Cell Mol Bioeng. 2019 Jul 9;12(4):311-325. doi: 10.1007/s12195-019-00585-0. eCollection 2019 Aug.
6
The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease.
Annu Rev Biomed Eng. 2019 Jun 4;21:443-468. doi: 10.1146/annurev-bioeng-060418-052139. Epub 2019 Mar 27.
8
Reconstruction Strategies of the Ureter and Urinary Diversion Using Tissue Engineering Approaches.
Tissue Eng Part B Rev. 2019 Jun;25(3):237-248. doi: 10.1089/ten.TEB.2018.0345. Epub 2019 May 28.
9
A computational model of ureteral peristalsis and an investigation into ureteral reflux.
Biomed Eng Lett. 2017 Nov 18;8(1):117-125. doi: 10.1007/s13534-017-0053-0. eCollection 2018 Feb.
10
Effect of fluid shear stress on cultured ureteric bud cells.
Biomicrofluidics. 2018 Jul 10;12(4):044107. doi: 10.1063/1.5035328. eCollection 2018 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验