School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore.
J Tissue Eng Regen Med. 2018 Apr;12(4):e2039-e2050. doi: 10.1002/term.2635. Epub 2018 Jan 25.
Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-β-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation.
细胞对生理机械应激特别敏感,尤其是在胎儿早期发育过程中。采用仿生学方法,有必要开发生物反应器系统,以探索生理相关机械应变和切变应力对功能性组织生长和发育的影响。本研究介绍了一种多模式生物反应器系统,该系统允许对在双轴旋转(绕 2 个轴的腔室旋转)条件下培养的早期骨移植物施加循环压缩应变,用于骨组织工程。该生物反应器与溶解氧水平和 pH 值传感器集成在一起,允许实时、非侵入式监测培养参数。间充质干细胞接种聚己内酯-β-磷酸三钙支架在该生物反应器中培养了 2 周,在 4 种不同模式下进行培养:静态、循环压缩、双轴旋转和多模式(循环压缩和双轴旋转的组合)。与静态对照相比,多模式培养的细胞增殖率在前一周增加了 1.8 倍。在多模式生物反应器中培养 2 周,利用最佳流体流动条件和循环压缩的联合作用,导致成骨基因碱性磷酸酶(3.2 倍)、骨粘连蛋白(2.4 倍)、骨钙素(10 倍)和Ⅰ型胶原α1(2 倍)的上调与静态培养相比。我们首次报道了使用具有非侵入式传感模式的生物反应器平台,对机械刺激和双轴旋转对骨组织工程的独立和联合作用。所展示的结果表明,倾向于使用生理相关的生物反应器系统来生成用于临床植入的自体骨移植物的未来愿景。