文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

冶金焦结构表征方法的综合综述

A Comprehensive Review of Characterization Methods for Metallurgical Coke Structures.

作者信息

Zheng Heng, Xu Runsheng, Zhang Jianliang, Daghagheleh Oday, Schenk Johannes, Li Chuanhui, Wang Wei

机构信息

The State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China.

Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straβe 18, 8700 Leoben, Austria.

出版信息

Materials (Basel). 2021 Dec 27;15(1):174. doi: 10.3390/ma15010174.


DOI:10.3390/ma15010174
PMID:35009320
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8746142/
Abstract

The structure of coke affects its reactivity and strength, which directly influences its performance in the blast furnace. This review divides coke structures into chemical structure, physical structure, and optical texture according to their relevant characteristics. The focuses of this review are the current characterization methods and research status of the coke structures. The chemical structures (element composition and functional group) can be characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance imaging technology (13C NMR). The physical structures (pore structure and micro-crystallite structure) can be characterized by image method, X-ray CT imaging technique, mercury intrusion method, nitrogen gas adsorption method, X-ray diffraction method (XRD), and high-resolution transmission electron microscopy (HRTEM). The optical textures are usually divided and counted by a polarizing microscope. In the end, this review provides an idea of the construction of a coke molecular structural model, based on the above characterization. With the coke model, the evolution principles of the coke can be calculated and simulated. Hence, the coke performance can be predicted and optimized.

摘要

焦炭的结构会影响其反应性和强度,而这直接影响其在高炉中的性能。本综述根据焦炭结构的相关特性,将其分为化学结构、物理结构和光学织构。本综述的重点是焦炭结构的当前表征方法和研究现状。化学结构(元素组成和官能团)可通过元素分析、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和核磁共振成像技术(13C NMR)进行表征。物理结构(孔隙结构和微晶结构)可通过图像法、X射线CT成像技术、压汞法、氮气吸附法、X射线衍射法(XRD)和高分辨率透射电子显微镜(HRTEM)进行表征。光学织构通常用偏光显微镜进行划分和计数。最后,本综述基于上述表征,提出了构建焦炭分子结构模型的思路。利用焦炭模型,可以计算和模拟焦炭的演化原理。因此,可以预测和优化焦炭性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/adcf42c98fd6/materials-15-00174-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/431ac4c3d851/materials-15-00174-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/0159f985bc66/materials-15-00174-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/3d9390f528dd/materials-15-00174-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/ddb66b930386/materials-15-00174-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/e0f1ae18e5a9/materials-15-00174-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/006337dba409/materials-15-00174-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/40f9e23087e0/materials-15-00174-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/991afd49dbf9/materials-15-00174-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/c7c46259aee2/materials-15-00174-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/a3cd34698ae3/materials-15-00174-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/1c75f63efbe0/materials-15-00174-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/f8d183406c2b/materials-15-00174-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/3dca71e1ba8e/materials-15-00174-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/fe613de065b7/materials-15-00174-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/8695b0839a6e/materials-15-00174-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/b09741f3b26e/materials-15-00174-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/6023df104f5a/materials-15-00174-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/2ae205e13e71/materials-15-00174-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/adcf42c98fd6/materials-15-00174-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/431ac4c3d851/materials-15-00174-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/0159f985bc66/materials-15-00174-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/3d9390f528dd/materials-15-00174-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/ddb66b930386/materials-15-00174-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/e0f1ae18e5a9/materials-15-00174-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/006337dba409/materials-15-00174-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/40f9e23087e0/materials-15-00174-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/991afd49dbf9/materials-15-00174-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/c7c46259aee2/materials-15-00174-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/a3cd34698ae3/materials-15-00174-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/1c75f63efbe0/materials-15-00174-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/f8d183406c2b/materials-15-00174-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/3dca71e1ba8e/materials-15-00174-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/fe613de065b7/materials-15-00174-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/8695b0839a6e/materials-15-00174-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/b09741f3b26e/materials-15-00174-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/6023df104f5a/materials-15-00174-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/2ae205e13e71/materials-15-00174-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8746142/adcf42c98fd6/materials-15-00174-g019.jpg

相似文献

[1]
A Comprehensive Review of Characterization Methods for Metallurgical Coke Structures.

Materials (Basel). 2021-12-27

[2]
Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.

Adv Colloid Interface Sci. 2013-12-26

[3]
Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes.

Membranes (Basel). 2020-2-24

[4]
Adsorption and oxidation of elemental mercury from coal-fired flue gas over activated coke loaded with Mn-Ni oxides.

Environ Sci Pollut Res Int. 2019-4-2

[5]
Chemical and physical characterization of spent coffee ground biochar treated by a wet oxidation method for the production of a coke substitute.

Waste Manag. 2020-6-28

[6]
Graphitization and Performance of Deadman Coke in a Large Dissected Blast Furnace.

ACS Omega. 2021-9-23

[7]
Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke.

J Environ Sci (China). 2012

[8]
Study on the removal of elemental mercury from simulated flue gas by Fe₂O₃-CeO₂/AC at low temperature.

Environ Sci Pollut Res Int. 2016-3

[9]
Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials.

ACS Appl Mater Interfaces. 2019-1-23

[10]
Catalytic Gasification of Petroleum Coke with Different Ratios of KCO and Evolution of the Residual Coke Structure.

Molecules. 2023-9-23

引用本文的文献

[1]
Integration of Coke and CNMs with Bitumen: Synthesis, Methods, and Characterization.

Nanomaterials (Basel). 2025-5-31

[2]
Molecular simulation of the slurrying mechanism in microplastic semi-coke water slurry.

J Mol Model. 2024-8-6

[3]
Co-Carbonization of Discard Coal with Waste Polyethylene Terephthalate towards the Preparation of Metallurgical Coke.

Materials (Basel). 2023-3-30

本文引用的文献

[1]
Influence of Zinc on Nonisothermal Gasification Kinetics of Coke in a Blast Furnace.

ACS Omega. 2021-10-21

[2]
Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques.

Molecules. 2020-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索