Hasiak Mariusz, Sobieszczańska Beata, Łaszcz Amadeusz, Biały Michał, Chęcmanowski Jacek, Zatoński Tomasz, Bożemska Edyta, Wawrzyńska Magdalena
Department of Mechanics, Materials and Biomedical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland.
Department of Microbiology, Wroclaw Medical University, T. Chałubińskiego 4, 50-368 Wroclaw, Poland.
Materials (Basel). 2021 Dec 29;15(1):252. doi: 10.3390/ma15010252.
Microstructure, mechanical properties, corrosion resistance, and biocompatibility were studied for rapidly cooled 3 mm rods of ZrTiCuNiBe, ZrTiCuNiBe, and ZrTiCuNiSiBe (at.%) alloys, as well as for the reference 316L stainless steel and Ti-based Ti6Al4V alloy. Microstructure investigations confirm that Zr-based bulk metallic samples exhibit a glassy structure with minor fractions of crystalline phases. The nanoindentation tests carried out for all investigated composite materials allowed us to determine the mechanical parameters of individual phases observed in the samples. The instrumental hardness and elastic to total deformation energy ratio for every single phase observed in the manufactured Zr-based materials are higher than for the reference materials (316L stainless steel and Ti6Al4V alloy). A scratch tester used to determine the wear behavior of manufactured samples and reference materials revealed the effect of microstructure on mechanical parameters such as residual depth, friction force, and coefficient of friction. Electrochemical investigations in simulated body fluid performed up to 120 h show better or comparable corrosion resistance of Zr-based bulk metallic glasses in comparison with 316L stainless steel and Ti6Al4V alloy. The fibroblasts viability studies confirm the good biocompatibility of the produced materials. All obtained results show that fabricated biocompatible Zr-based materials are promising candidates for biomedical implants that require enhanced mechanical properties.
对快速冷却的ZrTiCuNiBe、ZrTiCuNiBe和ZrTiCuNiSiBe(原子百分比)合金的3毫米棒材以及参考316L不锈钢和Ti基Ti6Al4V合金的微观结构、力学性能、耐腐蚀性和生物相容性进行了研究。微观结构研究证实,Zr基块状金属样品呈现出具有少量结晶相的玻璃态结构。对所有研究的复合材料进行的纳米压痕测试使我们能够确定样品中观察到的各个相的力学参数。在制造的Zr基材料中观察到的每个单相的仪器硬度和弹性与总变形能之比高于参考材料(316L不锈钢和Ti6Al4V合金)。用于确定制造样品和参考材料磨损行为的划痕测试仪揭示了微观结构对诸如残余深度、摩擦力和摩擦系数等力学参数的影响。在模拟体液中进行长达120小时的电化学研究表明,与316L不锈钢和Ti6Al4V合金相比,Zr基块状金属玻璃具有更好或相当的耐腐蚀性。成纤维细胞活力研究证实了所生产材料具有良好的生物相容性。所有获得的结果表明,制造的具有生物相容性的Zr基材料是需要增强力学性能的生物医学植入物的有前途的候选材料。