Suppr超能文献

家畜信息学工具包:使用新颖的无监督机器学习和信息论方法,在多个传感器平台上视觉表征复杂行为模式的案例研究。

Livestock Informatics Toolkit: A Case Study in Visually Characterizing Complex Behavioral Patterns across Multiple Sensor Platforms, Using Novel Unsupervised Machine Learning and Information Theoretic Approaches.

机构信息

Department of Animal Science, University of California Davis, Davis, CA 95616, USA.

Department of Statistics, University of California Davis, Davis, CA 95616, USA.

出版信息

Sensors (Basel). 2021 Dec 21;22(1):1. doi: 10.3390/s22010001.

Abstract

Large and densely sampled sensor datasets can contain a range of complex stochastic structures that are difficult to accommodate in conventional linear models. This can confound attempts to build a more complete picture of an animal's behavior by aggregating information across multiple asynchronous sensor platforms. The Livestock Informatics Toolkit (LIT) has been developed in R to better facilitate knowledge discovery of complex behavioral patterns across Precision Livestock Farming (PLF) data streams using novel unsupervised machine learning and information theoretic approaches. The utility of this analytical pipeline is demonstrated using data from a 6-month feed trial conducted on a closed herd of 185 mix-parity organic dairy cows. Insights into the tradeoffs between behaviors in time budgets acquired from ear tag accelerometer records were improved by augmenting conventional hierarchical clustering techniques with a novel simulation-based approach designed to mimic the complex error structures of sensor data. These simulations were then repurposed to compress the information in this data stream into robust empirically-determined encodings using a novel pruning algorithm. Nonparametric and semiparametric tests using mutual and pointwise information subsequently revealed complex nonlinear associations between encodings of overall time budgets and the order that cows entered the parlor to be milked.

摘要

大型且密集采样的传感器数据集可能包含一系列复杂的随机结构,这些结构难以用传统的线性模型来处理。这可能会干扰通过在多个异步传感器平台上聚合信息来构建更全面的动物行为图像的尝试。Livestock Informatics Toolkit (LIT) 已在 R 中开发出来,以便使用新颖的无监督机器学习和信息论方法,更好地促进对 Precision Livestock Farming (PLF) 数据流中复杂行为模式的知识发现。使用在一个由 185 头混合胎次有机奶牛组成的封闭牛群中进行的为期 6 个月的饲料试验的数据来演示此分析管道的实用性。通过将一种新颖的基于模拟的方法与传统的层次聚类技术相结合,对从耳标加速度计记录中获得的时间预算行为之间的权衡进行了改进,该方法旨在模拟传感器数据的复杂误差结构。然后,将这些模拟用于使用新的修剪算法将该数据流中的信息压缩为稳健的经验确定编码。随后使用互信息和逐点信息的非参数和半参数测试,揭示了整体时间预算编码和奶牛进入挤奶厅的顺序之间的复杂非线性关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8747447/0237a975f08c/sensors-22-00001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验