Suppr超能文献

利用高频/低频谱功率比验证人类睡眠中的视觉识别肌肉电位。

Validation of Visually Identified Muscle Potentials during Human Sleep Using High Frequency/Low Frequency Spectral Power Ratios.

机构信息

Mental Illness Research, Education and Clinical Center (MIRECC-VISN1), VA Bedford Health Care System, Bedford, MA 01730, USA.

VA Portland Health Care System, Portland, OR 97239, USA.

出版信息

Sensors (Basel). 2021 Dec 22;22(1):55. doi: 10.3390/s22010055.

Abstract

Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.

摘要

表面肌电图(EMG)通常记录于颏肌(下巴/颏部)和胫骨前肌(小腿/胫骨)等肌肉群,常在接受整夜多导睡眠图检查的人类受试者中进行。这些信号非常重要,不仅有助于定义正常的睡眠阶段,还可用于定义某些疾病状态,例如 REM 睡眠期的异常 EMG 活动,如 REM 睡眠行为障碍和帕金森病。在临床领域评估此类 EMG 信号的金标准方法通常是定性的,因此繁琐且受到个体解释的影响。我们最初开发了一种使用高频与低频频谱功率比的数字化信号处理方法,并将该方法与 EMG 信号瞬态肌肉激活的专家人工评分进行了验证。在此,我们进一步改进和验证了我们的初始方法,将其应用于从 461 名人类参与者中获得的 1,618,842 秒多导睡眠 REM 睡眠记录的 EMG 活动。这些数据表明视觉解释与光谱处理信号之间存在显著关联,表明在 REM 睡眠期间检测和量化异常高水平 EMG 活动的方法非常准确。因此,我们在人类睡眠记录期间对 EMG 进行定量的自动化方法是实用的、可行的,并且可能为 REM 睡眠行为障碍和帕金森病的筛查提供急需的临床工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验