Suppr超能文献

机器学习和情感分析在不同类型数据中检测可疑在线评论者的比较。

Comparison of Machine Learning and Sentiment Analysis in Detection of Suspicious Online Reviewers on Different Type of Data.

机构信息

Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Kosice, Slovakia.

出版信息

Sensors (Basel). 2021 Dec 27;22(1):155. doi: 10.3390/s22010155.

Abstract

The article focuses on solving an important problem of detecting suspicious reviewers in online discussions on social networks. We have concentrated on a special type of suspicious authors, on trolls. We have used methods of machine learning for generation of detection models to discriminate a troll reviewer from a common reviewer, but also methods of sentiment analysis to recognize the sentiment typical for troll's comments. The sentiment analysis can be provided also using machine learning or lexicon-based approach. We have used lexicon-based sentiment analysis for its better ability to detect a dictionary typical for troll authors. We have achieved Accuracy = 0.95 and F1 = 0.80 using sentiment analysis. The best results using machine learning methods were achieved by support vector machine, Accuracy = 0.986 and F1 = 0.988, using a dataset with the set of all selected attributes. We can conclude that detection model based on machine learning is more successful than lexicon-based sentiment analysis, but the difference in accuracy is not so large as in F1 measure.

摘要

本文专注于解决在社交网络的在线讨论中检测可疑评论者这一重要问题。我们专注于一种特殊类型的可疑作者,即喷子。我们使用机器学习方法生成检测模型,以区分喷子评论者和普通评论者,还使用情感分析方法识别喷子评论的典型情感。情感分析也可以使用机器学习或基于词典的方法来提供。我们使用基于词典的情感分析来提高检测喷子作者特有的词典的能力。我们通过情感分析实现了准确率=0.95 和 F1=0.80。使用机器学习方法获得的最佳结果是由支持向量机实现的,准确率=0.986,F1=0.988,使用了包含所有选定属性的数据集。我们可以得出结论,基于机器学习的检测模型比基于词典的情感分析更成功,但在准确性方面的差异不如在 F1 度量方面那么大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c17f/8747373/95dbbdde389a/sensors-22-00155-g001.jpg

相似文献

2
Online Troll Reviewer Detection Using Deep Learning Techniques.
Appl Bionics Biomech. 2022 Jun 8;2022:4637594. doi: 10.1155/2022/4637594. eCollection 2022.
4
A Sentiment Analysis Method Based on a Blockchain-Supported Long Short-Term Memory Deep Network.
Sensors (Basel). 2022 Jun 11;22(12):4419. doi: 10.3390/s22124419.
5
A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification.
Artif Intell Med. 2024 Feb;148:102758. doi: 10.1016/j.artmed.2023.102758. Epub 2024 Jan 8.
6
Weighted Joint Sentiment-Topic Model for Sentiment Analysis Compared to ALGA: Adaptive Lexicon Learning Using Genetic Algorithm.
Comput Intell Neurosci. 2022 Jul 31;2022:7612276. doi: 10.1155/2022/7612276. eCollection 2022.
7
Heterogeneous Ensemble Deep Learning Model for Enhanced Arabic Sentiment Analysis.
Sensors (Basel). 2022 May 12;22(10):3707. doi: 10.3390/s22103707.
8
9
Lifelong Text-Audio Sentiment Analysis learning.
Neural Netw. 2023 May;162:162-174. doi: 10.1016/j.neunet.2023.02.008. Epub 2023 Feb 17.
10
Sentiment Analysis of Animated Film Reviews Using Intelligent Machine Learning.
Comput Intell Neurosci. 2022 Jul 20;2022:8517205. doi: 10.1155/2022/8517205. eCollection 2022.

引用本文的文献

1
Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method.
Sensors (Basel). 2024 Jun 2;24(11):3590. doi: 10.3390/s24113590.
2
Deep Learning in the Detection of Disinformation about COVID-19 in Online Space.
Sensors (Basel). 2022 Nov 30;22(23):9319. doi: 10.3390/s22239319.
3
A Novel Data Augmentation Method for Improving the Accuracy of Insulator Health Diagnosis.
Sensors (Basel). 2022 Oct 26;22(21):8187. doi: 10.3390/s22218187.
5
Online Troll Reviewer Detection Using Deep Learning Techniques.
Appl Bionics Biomech. 2022 Jun 8;2022:4637594. doi: 10.1155/2022/4637594. eCollection 2022.

本文引用的文献

2
An Approach to Integrating Sentiment Analysis into Recommender Systems.
Sensors (Basel). 2021 Aug 23;21(16):5666. doi: 10.3390/s21165666.
3
An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization.
IEEE Trans Cybern. 2022 Jul;52(7):6684-6696. doi: 10.1109/TCYB.2020.3041212. Epub 2022 Jul 4.
4
What are decision trees?
Nat Biotechnol. 2008 Sep;26(9):1011-3. doi: 10.1038/nbt0908-1011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验