Suppr超能文献

以深度学习为基本方法的假新闻检测中的联邦学习

Federated Learning in the Detection of Fake News Using Deep Learning as a Basic Method.

作者信息

Machová Kristína, Mach Marián, Balara Viliam

机构信息

Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia.

出版信息

Sensors (Basel). 2024 Jun 2;24(11):3590. doi: 10.3390/s24113590.

Abstract

This article explores the possibilities for federated learning with a deep learning method as a basic approach to train detection models for fake news recognition. Federated learning is the key issue in this research because this kind of learning makes machine learning more secure by training models on decentralized data at decentralized places, for example, at different IoT edges. The data are not transformed between decentralized places, which means that personally identifiable data are not shared. This could increase the security of data from sensors in intelligent houses and medical devices or data from various resources in online spaces. Each station edge could train a model separately on data obtained from its sensors and on data extracted from different sources. Consequently, the models trained on local data on local clients are aggregated at the central ending point. We have designed three different architectures for deep learning as a basis for use within federated learning. The detection models were based on embeddings, CNNs (convolutional neural networks), and LSTM (long short-term memory). The best results were achieved using more LSTM layers (F1 = 0.92). On the other hand, all three architectures achieved similar results. We also analyzed results obtained using federated learning and without it. As a result of the analysis, it was found that the use of federated learning, in which data were decomposed and divided into smaller local datasets, does not significantly reduce the accuracy of the models.

摘要

本文探讨了以深度学习方法作为训练假新闻识别检测模型的基本方法进行联邦学习的可能性。联邦学习是本研究中的关键问题,因为这种学习方式通过在分散的地点(例如不同的物联网边缘)对分散的数据进行模型训练,使机器学习更加安全。数据不会在分散的地点之间进行传输,这意味着个人身份可识别数据不会被共享。这可以提高来自智能家居传感器和医疗设备的数据或来自在线空间各种资源的数据的安全性。每个站点边缘可以分别根据从其传感器获得的数据以及从不同来源提取的数据来训练模型。因此,在本地客户端上基于本地数据训练的模型会在中央端点进行聚合。我们设计了三种不同的深度学习架构,作为在联邦学习中使用的基础。检测模型基于嵌入、卷积神经网络(CNN)和长短期记忆网络(LSTM)。使用更多的LSTM层取得了最佳结果(F1 = 0.92)。另一方面,所有三种架构都取得了相似的结果。我们还分析了使用联邦学习和不使用联邦学习所获得的结果。分析结果表明,使用将数据分解并划分为较小本地数据集的联邦学习,并不会显著降低模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/678c/11175327/fa8de5e9894b/sensors-24-03590-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验