Suppr超能文献

使用深度学习技术检测在线恶意评论者

Online Troll Reviewer Detection Using Deep Learning Techniques.

作者信息

Al-Adhaileh Mosleh Hmoud, Aldhyani Theyazn H H, Alghamdi Ans D

机构信息

E-Learning and Distance Education, King Faisal University, Saudi Arabia, P.O. Box 4000 Al-Ahsa, Saudi Arabia.

Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

出版信息

Appl Bionics Biomech. 2022 Jun 8;2022:4637594. doi: 10.1155/2022/4637594. eCollection 2022.

Abstract

The concentration of this paper is on detecting trolls among reviewers and users in online discussions and link distribution on social news aggregators such as Reddit. Trolls, a subset of suspicious reviewers, have been the focus of our attention. A troll reviewer is distinguished from an ordinary reviewer by the use of sentiment analysis and deep learning techniques to identify the sentiment of their troll posts. Machine learning and lexicon-based approaches can also be used for sentiment analysis. The novelty of the proposed system is that it applies a convolutional neural network integrated with a bidirectional long short-term memory (CNN-BiLSTM) model to detect troll reviewers in online discussions using a standard troll online reviewer dataset collected from the Reddit social media platform. Two experiments were carried out in our work: the first one was based on text data (sentiment analysis), and the second one was based on numerical data (10 attributes) extracted from the dataset. The CNN-BiLSTM model achieved 97% accuracy using text data and 100% accuracy using numerical data. While analyzing the results of our model, we observed that it provided better results than the compared methods.

摘要

本文的重点是在在线讨论以及诸如Reddit等社交新闻聚合器上的链接分发中,检测评论者和用户中的恶意捣乱者。恶意捣乱者作为可疑评论者的一个子集,一直是我们关注的焦点。通过使用情感分析和深度学习技术来识别其恶意捣乱帖子的情感,将恶意捣乱评论者与普通评论者区分开来。机器学习和基于词典的方法也可用于情感分析。所提出系统的新颖之处在于,它应用了一种集成双向长短期记忆的卷积神经网络(CNN-BiLSTM)模型,使用从Reddit社交媒体平台收集的标准在线恶意捣乱评论者数据集,来检测在线讨论中的恶意捣乱评论者。我们的工作进行了两项实验:第一项基于文本数据(情感分析),第二项基于从数据集中提取的数值数据(10个属性)。CNN-BiLSTM模型使用文本数据时准确率达到97%,使用数值数据时准确率达到100%。在分析我们模型的结果时,我们观察到它比所比较的方法提供了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9d/9213121/062bce470b15/ABB2022-4637594.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验