文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度递归典型相关分析和k近邻分类器的冷水机组系统传感器漂移故障诊断

Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier.

作者信息

Gao Long, Li Donghui, Yao Lele, Gao Yanan

机构信息

School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin 300072, China.

出版信息

ISA Trans. 2022 Mar;122:232-246. doi: 10.1016/j.isatra.2021.04.037. Epub 2021 May 5.


DOI:10.1016/j.isatra.2021.04.037
PMID:33985786
Abstract

Early detection and diagnosis of the chiller sensor drift fault are crucial to maintain normal operation for energy saving. Due to the complex physical structure and operation conditions, sensor drift fault in the chiller system is difficult to discover. To improve the energy efficiency and operation reliability of the chiller system, this paper proposes a novel chiller sensor drift fault diagnosis method using deep recurrent canonical correlation analysis and k-nearest neighbor (KNN) classifier. A deep bidirectional long short-term memory recurrent neural network-based deep recurrent canonical correlation analysis (BLCCA) model is developed, which can automatically extract the nonlinear and temporal features from raw operation data in the chiller system. Based on the proposed BLCCA model, a residual generator is designed to generate the directional residual vector. The cumulative residual vector method is employed to improve the detectability of the sensor drift fault. An efficient KNN-based method is applied to classify the residual vector and judge the faulty sensor. Different distance measures and neighbor numbers are further analyzed to optimize the fault diagnosis performance. The proposed fault detection and diagnosis (FDD) method is validated by using a data set which has been collected from an actual chiller system. Three different state-of-the-art fault diagnosis methods are used for comparison with the proposed method. The comparisons of the experimental results demonstrate that this method achieves significant fault diagnosis performance in terms of diagnosis accuracy, recall, and F measure (F1 score).

摘要

早期检测和诊断冷水机组传感器漂移故障对于维持正常运行以实现节能至关重要。由于冷水机组系统复杂的物理结构和运行条件,其传感器漂移故障难以发现。为提高冷水机组系统的能源效率和运行可靠性,本文提出一种基于深度递归典型相关分析和k近邻(KNN)分类器的新型冷水机组传感器漂移故障诊断方法。开发了一种基于深度双向长短期记忆递归神经网络的深度递归典型相关分析(BLCCA)模型,该模型可自动从冷水机组系统的原始运行数据中提取非线性和时间特征。基于所提出的BLCCA模型,设计了一个残差生成器来生成方向残差向量。采用累积残差向量法提高传感器漂移故障的可检测性。应用一种基于KNN的有效方法对残差向量进行分类并判断故障传感器。进一步分析了不同的距离度量和邻居数量以优化故障诊断性能。利用从实际冷水机组系统收集的数据集对所提出的故障检测与诊断(FDD)方法进行了验证。使用三种不同的先进故障诊断方法与所提出的方法进行比较。实验结果的比较表明,该方法在诊断准确率、召回率和F度量(F1分数)方面具有显著的故障诊断性能。

相似文献

[1]
Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier.

ISA Trans. 2022-3

[2]
A Novel Chiller Sensors Fault Diagnosis Method Based on Virtual Sensors.

Sensors (Basel). 2019-7-8

[3]
Dynamic Calibration Method of Sensor Drift Fault in HVAC System Based on Bayesian Inference.

Sensors (Basel). 2022-7-18

[4]
Creating an automated chiller fault detection and diagnostics tool using a data fault library.

ISA Trans. 2003-7

[5]
A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit.

Sensors (Basel). 2020-4-26

[6]
A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion.

Sensors (Basel). 2019-4-9

[7]
Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning.

Sensors (Basel). 2021-5-22

[8]
Fault Diagnosis Method for Rolling Bearings Based on Composite Multiscale Fluctuation Dispersion Entropy.

Entropy (Basel). 2019-3-18

[9]
A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine.

Sensors (Basel). 2020-6-24

[10]
Rolling Bearing Diagnosis Based on Composite Multiscale Weighted Permutation Entropy.

Entropy (Basel). 2018-10-24

引用本文的文献

[1]
High Precision Feature Fast Extraction Strategy for Aircraft Attitude Sensor Fault Based on RepVGG and SENet Attention Mechanism.

Sensors (Basel). 2022-12-9

[2]
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis.

Comput Intell Neurosci. 2022

[3]
Divide-and-Attention Network for HE-Stained Pathological Image Classification.

Biology (Basel). 2022-6-29

[4]
Fault Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples.

Sensors (Basel). 2021-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索