Suppr超能文献

基于投影、表面重建和视频压缩的动态点云压缩

Dynamic Point Cloud Compression Based on Projections, Surface Reconstruction and Video Compression.

作者信息

Dumic Emil, Bjelopera Anamaria, Nüchter Andreas

机构信息

Department of Electrical Engineering, University North, 104. Brigade 3, 42000 Varaždin, Croatia.

Department of Electrical Engineering and Computing, University of Dubrovnik, Cira Carica 4, 20000 Dubrovnik, Croatia.

出版信息

Sensors (Basel). 2021 Dec 28;22(1):197. doi: 10.3390/s22010197.

Abstract

In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.

摘要

在本文中,我们将提出一种基于不同投影类型和位深度的新型动态点云压缩方法,结合表面重建算法以及针对所获得的几何和纹理映射的视频压缩。纹理映射在创建Voronoi图之后进行了压缩。所使用的视频压缩分别针对几何(FFV1)和纹理(H.265/HEVC)。解压缩后的点云使用泊松表面重建算法进行重建。使用点对点和点对面测量方法与原始点云进行了比较。综合实验表明,对于某些投影映射(圆柱投影、米勒投影和墨卡托投影)具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ca5/8749693/b3d38462e7f7/sensors-22-00197-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验