Dumic Emil, Bjelopera Anamaria, Nüchter Andreas
Department of Electrical Engineering, University North, 104. Brigade 3, 42000 Varaždin, Croatia.
Department of Electrical Engineering and Computing, University of Dubrovnik, Cira Carica 4, 20000 Dubrovnik, Croatia.
Sensors (Basel). 2021 Dec 28;22(1):197. doi: 10.3390/s22010197.
In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.
在本文中,我们将提出一种基于不同投影类型和位深度的新型动态点云压缩方法,结合表面重建算法以及针对所获得的几何和纹理映射的视频压缩。纹理映射在创建Voronoi图之后进行了压缩。所使用的视频压缩分别针对几何(FFV1)和纹理(H.265/HEVC)。解压缩后的点云使用泊松表面重建算法进行重建。使用点对点和点对面测量方法与原始点云进行了比较。综合实验表明,对于某些投影映射(圆柱投影、米勒投影和墨卡托投影)具有更好的性能。