文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于遥感的三维点云应用、数据集和压缩方法:一项元调查

Three-Dimensional Point Cloud Applications, Datasets, and Compression Methodologies for Remote Sensing: A Meta-Survey.

作者信息

Dumic Emil, da Silva Cruz Luís A

机构信息

Department of Electrical Engineering, University North, 104. Brigade 3, 42000 Varaždin, Croatia.

Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal.

出版信息

Sensors (Basel). 2025 Mar 7;25(6):1660. doi: 10.3390/s25061660.


DOI:10.3390/s25061660
PMID:40292730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11945083/
Abstract

This meta-survey provides a comprehensive review of 3D point cloud (PC) applications in remote sensing (RS), essential datasets available for research and development purposes, and state-of-the-art point cloud compression methods. It offers a comprehensive exploration of the diverse applications of point clouds in remote sensing, including specialized tasks within the field, precision agriculture-focused applications, and broader general uses. Furthermore, datasets that are commonly used in remote-sensing-related research and development tasks are surveyed, including urban, outdoor, and indoor environment datasets; vehicle-related datasets; object datasets; agriculture-related datasets; and other more specialized datasets. Due to their importance in practical applications, this article also surveys point cloud compression technologies from widely used tree- and projection-based methods to more recent deep learning (DL)-based technologies. This study synthesizes insights from previous reviews and original research to identify emerging trends, challenges, and opportunities, serving as a valuable resource for advancing the use of point clouds in remote sensing.

摘要

这项元调查全面综述了三维点云(PC)在遥感(RS)中的应用、可用于研发目的的重要数据集以及最新的点云压缩方法。它全面探索了点云在遥感中的各种应用,包括该领域内的特定任务、以精准农业为重点的应用以及更广泛的一般用途。此外,还调查了在与遥感相关的研发任务中常用的数据集,包括城市、户外和室内环境数据集;与车辆相关的数据集;物体数据集;与农业相关的数据集;以及其他更专业的数据集。由于点云压缩技术在实际应用中的重要性,本文还调查了从广泛使用的基于树和投影的方法到最新的基于深度学习(DL)的技术。本研究综合了以往综述和原创研究的见解,以识别新出现的趋势、挑战和机遇,为推动点云在遥感中的应用提供了宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/11bfadb3810d/sensors-25-01660-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/903656e98742/sensors-25-01660-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/5d5ef9738b94/sensors-25-01660-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/12d033ee20bb/sensors-25-01660-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/11bfadb3810d/sensors-25-01660-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/903656e98742/sensors-25-01660-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/5d5ef9738b94/sensors-25-01660-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/12d033ee20bb/sensors-25-01660-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11945083/11bfadb3810d/sensors-25-01660-g004.jpg

相似文献

[1]
Three-Dimensional Point Cloud Applications, Datasets, and Compression Methodologies for Remote Sensing: A Meta-Survey.

Sensors (Basel). 2025-3-7

[2]
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing.

Sensors (Basel). 2022-10-16

[3]
Deep Learning on Point Clouds and Its Application: A Survey.

Sensors (Basel). 2019-9-26

[4]
Learning Polynomial-Based Separable Convolution for 3D Point Cloud Analysis.

Sensors (Basel). 2021-6-19

[5]
Point Cloud Compression: Impact on Object Detection in Outdoor Contexts.

Sensors (Basel). 2022-8-2

[6]
A Survey of Label-Efficient Deep Learning for 3D Point Clouds.

IEEE Trans Pattern Anal Mach Intell. 2024-12

[7]
Compressing and Recovering Short-Range MEMS-Based LiDAR Point Clouds Based on Adaptive Clustered Compressive Sensing and Application to 3D Rock Fragment Surface Point Clouds.

Sensors (Basel). 2024-9-1

[8]
Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review.

Sensors (Basel). 2019-2-16

[9]
Deep Learning for 3D Point Clouds: A Survey.

IEEE Trans Pattern Anal Mach Intell. 2021-12

[10]
Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion.

Sensors (Basel). 2021-2-26

本文引用的文献

[1]
A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part I: Geometry.

IEEE Trans Pattern Anal Mach Intell. 2025-1

[2]
A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part II: Attribute.

IEEE Trans Pattern Anal Mach Intell. 2025-1

[3]
Improved Video-Based Point Cloud Compression via Segmentation.

Sensors (Basel). 2024-7-1

[4]
A Survey on Data Compression Techniques for Automotive LiDAR Point Clouds.

Sensors (Basel). 2024-5-17

[5]
Multispectral Light Detection and Ranging Technology and Applications: A Review.

Sensors (Basel). 2024-3-4

[6]
Intelligent Point Cloud Processing, Sensing, and Understanding.

Sensors (Basel). 2024-1-3

[7]
Inter-Frame Compression for Dynamic Point Cloud Geometry Coding.

IEEE Trans Image Process. 2024

[8]
VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain.

Data Brief. 2023-10-14

[9]
Subjective Quality Assessment of V-PCC-Compressed Dynamic Point Clouds Degraded by Packet Losses.

Sensors (Basel). 2023-6-15

[10]
CACTUS: Content-Aware Compression and Transmission Using Semantics for Automotive LiDAR Data.

Sensors (Basel). 2023-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索