Suppr超能文献

利用互作组驱动的优先级排序,通过单体全外显子组和全基因组测序对遗传性脑白质病进行诊断。

Diagnosis of Genetic White Matter Disorders by Singleton Whole-Exome and Genome Sequencing Using Interactome-Driven Prioritization.

机构信息

From the Neurometabolic Diseases Laboratory (A.S., A.R.-P., E. Verdura, V.V.-S., M.R., S.F., L.P.-S., J.J.M., C.G., C.C., A.P.), Bellvitge Biomedical Research Institute (IDIBELL); Instituto de Salud Carlos III (ISCIII) (A.S., A.R.-P., E. Verdura, M.R., S.F., L.P.-S., J.J.M., C.G., R.A., M.O., A.G.-C., J.A., M.d.T., L.A.P.-J., A.M., A.P.) and Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (M. Girós), Center for Biomedical Research on Rare Diseases (CIBERER); Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol (A.R.-P.), and Pediatric Neurology Research Group, Vall d'Hebron Research Institute (A.M.), and Pediatric Neurology Department, Vall d'Hebron University Hospital (M.d.T., A.M.), Universitat Autònoma de Barcelona; Neuromuscular Unit, Neurology Department (V.V.-S., C.C.), Hospital Universitari de Bellvitge and Hospitalet de Llobregat, Universitat de Barcelona; Institut de Recerca Pediàtrica (R.A., M.O., A.G.-C.) and Molecular and Genetics Medicine Section (J.A.), Hospital Sant Joan de Déu (IRP-HSJD), Barcelona; Pediatric Neurology Unit, Department of Pediatrics (M.E.Y., S.A.-A.), Navarra Health Service, Navarrabiomed Research Foundation; Departments of Neuropediatrics (I.M.) and Neurology (E.M.R., A.L.d.M.), Hospital Universitario Donostia; Biodonostia Health Research Institute (Biodonostia HRI) (I.M., E.M.R., A.L.d.M.); University of the Basque Country (UPV-EHU) (I.M., A.L.d.M.), San Sebastian; Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED) (I.M., E.M.R., A.L.d.M.), Carlos III Health Institute, Madrid, Spain; Département de Médecine Translationnelle et Neurogénétique (C.R., J.L.M.), IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch; Laboratoire de Diagnostic Génétique (J.L.M.), Hôpitaux Universitaires de Strasbourg; Chaire de Génétique Humaine (J.L.M.), Collège de France, Illkirch; Complejo Asistencial Universitario de Burgos (D.C.); Department of Paediatric Neurology (C.S.-C.), Complejo Hospitalario Jaén; CNAG-CRG, Centre for Genomic Regulation (CRG) (S.B., M. Gut), Barcelona Institute of Science and Technology (BIST); Department of Pediatric Radiology (E. Vázquez), Hospital Materno-Infantil Vall d'Hebrón, Barcelona, Spain; Pediatric Neurology (M.T.), Hospital Clínico San Borja Arriarán, Central Campus Universidad de Chile; Genetics Service (L.A.P.-J.), Hospital del Mar Research Institute (IMIM); Department of Experimental and Health Sciences (L.A.P.-J.), Universitat Pompeu Fabra, Barcelona; Department of Paediatric Neurology (L.G.G.-S.), Children's University Hospital Niño Jesús, Madrid; and Catalan Institution of Research and Advanced Studies (ICREA) (A.P.), Barcelona, Spain.

出版信息

Neurology. 2022 Mar 1;98(9):e912-e923. doi: 10.1212/WNL.0000000000013278. Epub 2022 Jan 10.

Abstract

BACKGROUND AND OBJECTIVES

Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes.

METHODS

A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient.

RESULTS

We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being , , , and , and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD.

DISCUSSION

Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.

摘要

背景与目的

遗传性脑白质病(genetic white matter disorders,GWMD)具有异质性起源,目前已确定超过 100 个致病基因。经典的靶向方法仅能在所有患者的一半中实现分子诊断。我们旨在确定单样本全外显子组测序(singleton whole-exome sequencing,sWES)和全基因组测序(whole-genome sequencing,WGS)的临床应用价值,同时识别新的表型和候选基因,我们采用表型和相互作用组驱动的优先级算法对 GWMD 进行解读。

方法

2017 年 4 月至 2019 年 12 月,在贝尔维奇生物医学研究所(Bellvitge Biomedical Research Institute,IDIBELL)和西班牙三级医院的神经病学单位的合作研究中,招募了所有年龄段的、尽管进行了广泛的标准临床检查仍未确诊的 GWMD 患者进行病例系列研究。我们进行了 sWES 和 WGS,并应用了我们的基于每个患者的人类表型本体论术语的 GWMD 相关基因种子组的网络扩展的相互作用组优先级算法。

结果

我们评估了 126 例患者(101 例儿童和 25 例成人),年龄从 1 个月至 74 岁。在 59%的病例中,通过单样本 WES 获得了首次分子诊断,经过每年的重新分析,该比例增加至 68%,对 16 例阴性病例进行 WGS 后,诊断率达到 72%。在 91 例确诊病例中,我们发现了 57 个不同基因中的变异,最常见的是 、 、 、 ,在 6 个家族中存在复杂表型的双重诊断,这突显了基因组分析对解决这些病例的重要性。我们发现了 9 个引起新疾病的候选基因,并提出了其他潜在的新 GWMD 候选基因。

讨论

我们的策略具有较高的诊断率,是 GWMD 的 trio WES/WGS 的良好替代方法。与经典的靶向方法相比,它缩短了诊断时间,从而优化了适当的管理。此外,相互作用组驱动的优先级分析管道可发现新的致病基因和表型,并预测新的潜在候选基因,揭示髓鞘生成和维持的发病机制,这对髓鞘生成和维持至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b35/8901178/3c77dafe976a/NEUROLOGY2021173779f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验