Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
Sci Rep. 2022 Jan 10;12(1):339. doi: 10.1038/s41598-021-04072-3.
Insulin resistance (IR) affects a quarter of the world's adult population and is a major factor in the pathogenesis of cardio-metabolic disease. In this pilot study, we implemented a non-invasive breathomics approach, combined with random forest machine learning, to investigate metabolic markers from obese pre-diabetic Hispanic adolescents as indicators of abnormal metabolic regulation. Using the ReCIVA breathalyzer device for breath collection, we have identified a signature of 10 breath metabolites (breath-IR model), which correlates with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (R = 0.95, p < 0.001). A strong correlation was also observed between the breath-IR model and the blood glycemic profile (fasting insulin R = 0.91, p < 0.001 and fasting glucose R = 0.80, p < 0.001). Among tentatively identified metabolites, limonene, undecane, and 2,7-dimethyl-undecane, significantly cluster individuals based on HOMA-IR (p = 0.003, p = 0.002, and p < 0.001, respectively). Our breath-IR model differentiates between adolescents with and without IR with an AUC-ROC curve of 0.87, after cross-validation. Identification of a breath signature indicative of IR shows utility of exhaled breath metabolomics for assessing systemic metabolic dysregulation. A simple and non-invasive breath-based test has potential as a diagnostic tool for monitoring IR progression, allowing for earlier detection of IR and implementation of early interventions to prevent onset of type 2 diabetes mellitus.
胰岛素抵抗(IR)影响了全球四分之一的成年人口,是心血管代谢疾病发病机制的主要因素。在这项初步研究中,我们采用了一种非侵入性的呼吸组学方法,结合随机森林机器学习,来研究肥胖前驱糖尿病西班牙裔青少年的代谢标志物,以作为异常代谢调节的指标。我们使用 ReCIVA 呼气分析仪进行呼气采集,确定了 10 种呼吸代谢物的特征(呼吸 IR 模型),与稳态模型评估的胰岛素抵抗(HOMA-IR)相关(R=0.95,p<0.001)。呼吸 IR 模型与血糖谱也有很强的相关性(空腹胰岛素 R=0.91,p<0.001 和空腹血糖 R=0.80,p<0.001)。在暂定鉴定的代谢物中,柠檬烯、十一烷和 2,7-二甲基-十一烷根据 HOMA-IR 显著聚类个体(p=0.003、p=0.002 和 p<0.001)。经过交叉验证,我们的呼吸 IR 模型区分了有无 IR 的青少年,曲线下面积为 0.87。IR 指示性呼吸特征的识别表明呼出气体代谢组学可用于评估系统性代谢失调。简单且非侵入性的基于呼吸的测试具有作为监测 IR 进展的诊断工具的潜力,可更早地发现 IR,并实施早期干预以预防 2 型糖尿病的发生。