Suppr超能文献

KAS-seq:通过 N-酮代乙醛辅助标记对单链 DNA 进行全基因组测序。

KAS-seq: genome-wide sequencing of single-stranded DNA by N-kethoxal-assisted labeling.

机构信息

Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.

Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.

出版信息

Nat Protoc. 2022 Feb;17(2):402-420. doi: 10.1038/s41596-021-00647-6. Epub 2022 Jan 10.

Abstract

Transcription and its dynamics are crucial for gene expression regulation. However, very few methods can directly read out transcriptional activity with low-input material and high temporal resolution. This protocol describes KAS-seq, a robust and sensitive approach for capturing genome-wide single-stranded DNA (ssDNA) profiles using N-kethoxal-assisted labeling. We developed N-kethoxal, an azido derivative of kethoxal that reacts with deoxyguanosine bases of ssDNA in live cells within 5-10 min at 37 °C, allowing the capture of dynamic changes. Downstream biotinylation of labeled DNA occurs via copper-free click chemistry. Altogether, the KAS-seq procedure involves N-kethoxal labeling, DNA isolation, biotinylation, fragmentation, affinity pull-down, library preparation, sequencing and bioinformatics analysis. The pre-library construction labeling and enrichment can be completed in as little as 3-4 h and is applicable to both animal tissue and as few as 1,000 cultured cells. Our recent study shows that ssDNA signals measured by KAS-seq simultaneously reveal the dynamics of transcriptionally engaged RNA polymerase (Pol) II, transcribing enhancers, RNA Pol I and Pol III activities and potentially non-canonical DNA structures with high analytical sensitivity. In addition to the experimental protocol, we also introduce here KAS-pipe, a user-friendly integrative data analysis pipeline for KAS-seq.

摘要

转录及其动态变化对于基因表达调控至关重要。然而,很少有方法可以用低输入材料和高时间分辨率直接读出转录活性。本方案描述了 KAS-seq,这是一种使用 N-酮醛辅助标记来捕获全基因组单链 DNA(ssDNA)谱的强大而敏感的方法。我们开发了 N-酮醛,这是酮醛的叠氮衍生物,在 37°C 下,它可以在 5-10 分钟内在活细胞中与 ssDNA 的脱氧鸟嘌呤碱基反应,从而可以捕获动态变化。标记 DNA 的后续生物素化通过无铜点击化学进行。总的来说,KAS-seq 程序包括 N-酮醛标记、DNA 分离、生物素化、片段化、亲和下拉、文库制备、测序和生物信息学分析。在文库构建之前的标记和富集可以在 3-4 小时内完成,适用于动物组织和低至 1000 个培养细胞。我们最近的研究表明,通过 KAS-seq 测量的 ssDNA 信号同时揭示了转录活跃的 RNA 聚合酶(Pol)II、转录增强子、RNA Pol I 和 Pol III 活性以及潜在的非规范 DNA 结构的动态变化,具有高分析灵敏度。除了实验方案外,我们还在这里介绍了 KAS-pipe,这是一种用于 KAS-seq 的用户友好的集成数据分析管道。

相似文献

1
KAS-seq: genome-wide sequencing of single-stranded DNA by N-kethoxal-assisted labeling.
Nat Protoc. 2022 Feb;17(2):402-420. doi: 10.1038/s41596-021-00647-6. Epub 2022 Jan 10.
2
Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ.
Nat Methods. 2020 May;17(5):515-523. doi: 10.1038/s41592-020-0797-9. Epub 2020 Apr 6.
3
KAS-Analyzer: a novel computational framework for exploring KAS-seq data.
Bioinform Adv. 2023 Sep 8;3(1):vbad121. doi: 10.1093/bioadv/vbad121. eCollection 2023.
4
Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
Nat Commun. 2024 Aug 10;15(1):6852. doi: 10.1038/s41467-024-50680-8.
5
Exploring transient global transcriptional changes induced by ascorbic acid revealed via atKAS-seq profiling.
Funct Integr Genomics. 2024 Mar 25;24(2):66. doi: 10.1007/s10142-024-01349-4.
6
KAS-seq profiling captures transcription dynamics during oocyte maturation.
J Ovarian Res. 2024 Jan 24;17(1):23. doi: 10.1186/s13048-023-01342-8.
7
spKAS-seq reveals R-loop dynamics using low-input materials by detecting single-stranded DNA with strand specificity.
Sci Adv. 2022 Dec 2;8(48):eabq2166. doi: 10.1126/sciadv.abq2166. Epub 2022 Nov 30.
9
Keth-seq for transcriptome-wide RNA structure mapping.
Nat Chem Biol. 2020 May;16(5):489-492. doi: 10.1038/s41589-019-0459-3. Epub 2020 Feb 3.
10
Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA.
Genome Res. 2012 May;22(5):957-65. doi: 10.1101/gr.130583.111. Epub 2012 Feb 24.

引用本文的文献

1
Tandem ssDNA in neutrophil extracellular traps binds thrombin and regulates immunothrombosis.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2418191122. doi: 10.1073/pnas.2418191122. Epub 2025 Jul 3.
3
Benchmarking DNA large language models on quadruplexes.
Comput Struct Biotechnol J. 2025 Mar 7;27:992-1000. doi: 10.1016/j.csbj.2025.03.007. eCollection 2025.
6
Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
Nat Commun. 2024 Aug 10;15(1):6852. doi: 10.1038/s41467-024-50680-8.
7
Cytoskeletal gene alterations linked to sorafenib resistance in hepatocellular carcinoma.
World J Surg Oncol. 2024 Jun 7;22(1):152. doi: 10.1186/s12957-024-03417-2.
8
G-quadruplex DNA structure is a positive regulator of transcription.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2320240121. doi: 10.1073/pnas.2320240121. Epub 2024 Feb 5.
9
Trans-vaccenic acid reprograms CD8 T cells and anti-tumour immunity.
Nature. 2023 Nov;623(7989):1034-1043. doi: 10.1038/s41586-023-06749-3. Epub 2023 Nov 22.

本文引用的文献

1
The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates.
Mol Cell. 2020 Aug 20;79(4):689-701.e10. doi: 10.1016/j.molcel.2020.06.015. Epub 2020 Jun 30.
2
Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ.
Nat Methods. 2020 May;17(5):515-523. doi: 10.1038/s41592-020-0797-9. Epub 2020 Apr 6.
3
ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis.
Nat Commun. 2020 Feb 12;11(1):857. doi: 10.1038/s41467-020-14654-w.
4
Keth-seq for transcriptome-wide RNA structure mapping.
Nat Chem Biol. 2020 May;16(5):489-492. doi: 10.1038/s41589-019-0459-3. Epub 2020 Feb 3.
5
Organization and regulation of gene transcription.
Nature. 2019 Sep;573(7772):45-54. doi: 10.1038/s41586-019-1517-4. Epub 2019 Aug 28.
6
CUT&Tag for efficient epigenomic profiling of small samples and single cells.
Nat Commun. 2019 Apr 29;10(1):1930. doi: 10.1038/s41467-019-09982-5.
7
Born to run: control of transcription elongation by RNA polymerase II.
Nat Rev Mol Cell Biol. 2018 Jul;19(7):464-478. doi: 10.1038/s41580-018-0010-5.
8
I-motif DNA structures are formed in the nuclei of human cells.
Nat Chem. 2018 Jun;10(6):631-637. doi: 10.1038/s41557-018-0046-3. Epub 2018 Apr 23.
9
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome.
Cell Syst. 2017 Mar 22;4(3):344-356.e7. doi: 10.1016/j.cels.2017.01.013. Epub 2017 Feb 22.
10
Use of conditioned media is critical for studies of regulation in response to rapid heat shock.
Cell Stress Chaperones. 2017 Jan;22(1):155-162. doi: 10.1007/s12192-016-0737-x. Epub 2016 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验