Suppr超能文献

用于病毒抑制的定制DNA纳米结构。

Designer DNA nanostructures for viral inhibition.

作者信息

Ren Shaokang, Fraser Keith, Kuo Lili, Chauhan Neha, Adrian Addison T, Zhang Fuming, Linhardt Robert J, Kwon Paul S, Wang Xing

机构信息

Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Nat Protoc. 2022 Feb;17(2):282-326. doi: 10.1038/s41596-021-00641-y. Epub 2022 Jan 10.

Abstract

Emerging viral diseases can substantially threaten national and global public health. Central to our ability to successfully tackle these diseases is the need to quickly detect the causative virus and neutralize it efficiently. Here we present the rational design of DNA nanostructures to inhibit dengue virus infection. The designer DNA nanostructure (DDN) can bind to complementary epitopes on antigens dispersed across the surface of a viral particle. Since these antigens are arranged in a defined geometric pattern that is unique to each virus, the structure of the DDN is designed to mirror the spatial arrangement of antigens on the viral particle, providing very high viral binding avidity. We describe how available structural data can be used to identify unique spatial patterns of antigens on the surface of a viral particle. We then present a procedure for synthesizing DDNs using a combination of in silico design principles, self-assembly, and characterization using gel electrophoresis, atomic force microscopy and surface plasmon resonance spectroscopy. Finally, we evaluate the efficacy of a DDN in inhibiting dengue virus infection via plaque-forming assays. We expect this protocol to take 2-3 d to complete virus antigen pattern identification from existing cryogenic electron microscopy data, ~2 weeks for DDN design, synthesis, and virus binding characterization, and ~2 weeks for DDN cytotoxicity and antiviral efficacy assays.

摘要

新发病毒性疾病会对国家和全球公共卫生构成重大威胁。我们成功应对这些疾病的能力的核心在于需要快速检测出致病病毒并有效地将其中和。在此,我们展示了用于抑制登革病毒感染的DNA纳米结构的合理设计。设计的DNA纳米结构(DDN)可与分散在病毒颗粒表面的抗原上的互补表位结合。由于这些抗原以每种病毒特有的特定几何模式排列,DDN的结构被设计成与病毒颗粒上抗原的空间排列相匹配,从而提供非常高的病毒结合亲和力。我们描述了如何利用现有的结构数据来识别病毒颗粒表面抗原的独特空间模式。然后,我们介绍了一种使用计算机辅助设计原理、自组装以及凝胶电泳、原子力显微镜和表面等离子体共振光谱表征相结合的方法来合成DDN。最后,我们通过蚀斑形成试验评估了DDN抑制登革病毒感染的功效。我们预计,从现有的低温电子显微镜数据完成病毒抗原模式识别需要2至3天,DDN的设计、合成和病毒结合表征需要约2周时间,而DDN的细胞毒性和抗病毒功效检测需要约2周时间。

相似文献

1
Designer DNA nanostructures for viral inhibition.用于病毒抑制的定制DNA纳米结构。
Nat Protoc. 2022 Feb;17(2):282-326. doi: 10.1038/s41596-021-00641-y. Epub 2022 Jan 10.
4
The antimicrobial peptide HS-1 inhibits dengue virus infection.抗菌肽 HS-1 抑制登革热病毒感染。
Virology. 2018 Jan 15;514:79-87. doi: 10.1016/j.virol.2017.11.009. Epub 2017 Nov 16.

引用本文的文献

10
Programmable mismatch-fueled high-efficiency DNA signal amplifier.可编程错配驱动的高效DNA信号放大器。
Chem Sci. 2022 Sep 26;13(40):11926-11935. doi: 10.1039/d2sc04814k. eCollection 2022 Oct 19.

本文引用的文献

1
Nanocages for virus inhibition.用于抑制病毒的纳米笼。
Nat Mater. 2021 Sep;20(9):1176-1177. doi: 10.1038/s41563-021-01088-y.
2
Programmable icosahedral shell system for virus trapping.可编程二十面体壳系统用于病毒捕获。
Nat Mater. 2021 Sep;20(9):1281-1289. doi: 10.1038/s41563-021-01020-4. Epub 2021 Jun 14.
3
Photonic resonator interferometric scattering microscopy.光子共振干涉散射显微镜。
Nat Commun. 2021 Mar 19;12(1):1744. doi: 10.1038/s41467-021-21999-3.
5
Nuclease resistance of DNA nanostructures.DNA纳米结构的核酸酶抗性。
Nat Rev Chem. 2021;5(4):225-239. doi: 10.1038/s41570-021-00251-y. Epub 2021 Feb 10.
6
Design, assembly, and characterization of membrane-spanning DNA nanopores.设计、组装和表征跨膜 DNA 纳米孔。
Nat Protoc. 2021 Jan;16(1):86-130. doi: 10.1038/s41596-020-0331-7. Epub 2020 Dec 21.
9
Single-particle cryo-EM at atomic resolution.单颗粒 cryo-EM 在原子分辨率下。
Nature. 2020 Nov;587(7832):152-156. doi: 10.1038/s41586-020-2829-0. Epub 2020 Oct 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验