Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Stat Med. 2022 Mar 15;41(6):964-980. doi: 10.1002/sim.9298. Epub 2022 Jan 10.
In this study, we propose a two-stage procedure for hypothesis testing, where the first stage is conventional hypothesis testing and the second is an equivalence testing procedure using an introduced empirical equivalence bound (EEB). In 2016, the American Statistical Association released a policy statement on P-values to clarify the proper use and interpretation in response to the criticism of reproducibility and replicability in scientific findings. A recent solution to improve reproducibility and transparency in statistical hypothesis testing is to integrate P-values (or confidence intervals) with practical or scientific significance. Similar ideas have been proposed via the equivalence test, where the goal is to infer equality under a presumption (null) of inequality of parameters. However, the definition of scientific significance/equivalence can sometimes be ill-justified and subjective. To circumvent this drawback, we introduce the B-value and the EEB, which are both estimated from the data. Performing a second-stage equivalence test, our procedure offers an opportunity to improve the reproducibility of findings across studies.
在本研究中,我们提出了一种两阶段假设检验程序,其中第一阶段是传统的假设检验,第二阶段是使用引入的经验等效边界(EEB)进行等效性检验程序。2016 年,美国统计协会发布了一项关于 P 值的政策声明,以澄清其在回应科学发现的可重复性和可复制性批评时的正确使用和解释。最近的一个解决方案是通过整合 P 值(或置信区间)与实际或科学意义来提高统计假设检验的可重复性和透明度。类似的想法也通过等效性检验提出,其目标是在参数不平等的假定(零假设)下推断平等。然而,科学意义/等效性的定义有时可能是不合理和主观的。为了规避这一缺陷,我们引入了 B 值和 EEB,它们都是从数据中估计出来的。通过进行第二阶段的等效性检验,我们的程序为提高研究之间的发现的可重复性提供了机会。