Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Appl Bio Mater. 2021 Apr 19;4(4):3374-3387. doi: 10.1021/acsabm.0c01673. Epub 2021 Mar 12.
In situ simultaneous formation of both covalent linkages and ion pair is challenging yet necessary to control the biological properties of a hydrogel. We report that the generation of covalent linkages (N-C) facilitates the simultaneous formation of ion pairs between polyelectrolytes (PEs) in a hydrogel network. Co-injection of tertiary amine functional macromolecules and reactive poly(ethylene glycol) (PEG) containing negatively charged PE leads to the formation of hydrogel conetworks consisting of covalent junctions and ion pairs. Our design is based on the gradual appearance of N-C junctions followed by formation of ion pairs. This strategy provides an easy access to hydrogel networks bearing a predetermined proportion of ion pair and covalent cross-linking junction. The proportion of ion pair could be varied by introducing a precalculated proportion of mono- and difunctional reactive PEG in the hydrogel system. The topology of the prepolymer and the hydrogel could be modulated (graft) during hydrogel formation. This approach is applicable to obtain covalent/ionic, covalent bond induced purely ionic, and purely covalent hydrogels of several macromolecular entities. The effect of ion pairing in the hydrogels is strongly reflected in the modulus, strain bearing, degradation, free volume, swelling, and drug release properties. The hydrogels exhibit microscopic recovery of modulus after application of high amplitude strain depending on the prepolymer concentration (chain entanglement) and nature of hydrogel network. The hydrogels are hemocompatible, and the covalent/ionic hydrogels show a slower release of methotrexate than that of the purely covalent hydrogel. This work provides an understanding for the in situ construction and manipulation of biological properties of hydrogels through the covalent bond induced formation of a strong ion pair.
在原位同时形成共价键和离子对具有挑战性,但对于控制水凝胶的生物特性是必要的。我们报告说,共价键(N-C)的生成有助于在水凝胶网络中聚电解质(PE)之间同时形成离子对。叔胺官能大分子和含有带负电荷的 PE 的反应性聚乙二醇(PEG)的共注射导致形成由共价键和离子对组成的水凝胶互穿网络。我们的设计基于 N-C 键的逐渐形成,随后形成离子对。这种策略提供了一种简单的方法来制备具有预定比例的离子对和共价交联键的水凝胶网络。通过在水凝胶系统中引入预先计算的单官能和双官能反应性 PEG 的比例,可以改变离子对的比例。预聚物和水凝胶的拓扑结构可以在水凝胶形成过程中进行调节(接枝)。这种方法适用于获得几种大分子实体的共价/离子、共价键诱导的纯离子和纯共价水凝胶。离子配对在水凝胶中的作用强烈反映在模量、承载应变、降解、自由体积、溶胀和药物释放特性上。水凝胶在应用高振幅应变后表现出模量的微观恢复,这取决于预聚物浓度(链缠结)和水凝胶网络的性质。水凝胶具有血液相容性,并且共价/离子水凝胶比纯共价水凝胶显示出较慢的甲氨蝶呤释放。这项工作为通过共价键诱导形成强离子对原位构建和操纵水凝胶的生物特性提供了理解。