文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

改性海藻酸盐以调节其物理化学性质并获得具有不同功能特性的生物材料。

Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties.

机构信息

Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.

Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland.

出版信息

Molecules. 2021 Nov 30;26(23):7264. doi: 10.3390/molecules26237264.


DOI:10.3390/molecules26237264
PMID:34885846
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659150/
Abstract

Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.

摘要

改性海藻酸盐具有广泛的应用,包括用于再生医学的敷料和支架的制造、用于选择性药物输送的系统以及水凝胶材料。本文综述讨论了改性海藻酸盐和获得具有新的或改进的功能特性的材料的方法。它讨论了海藻酸盐的不同的生物学和功能活性。它介绍了利用天然和合成肽进行修饰的方法,并描述了它们对海藻酸盐生物学性质的影响。功能化的成功取决于反应条件足以保证所需的转化,并为改性海藻酸盐提供新的所需特性,但又要足够温和以防止海藻酸盐降解。这篇综述是对使用生物活性配体进行海藻酸盐功能化的有效方法的文献描述。特别关注的是用肽进行海藻酸盐功能化的方法,因为海藻酸盐和肽的性质的结合导致获得具有来自两个组分的性质以及全新的、不同的功能的缀合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/3d362df517e8/molecules-26-07264-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/4f02f2d8d0c1/molecules-26-07264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/6c20ba7045bf/molecules-26-07264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/48cf26d150a5/molecules-26-07264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/b122807bc834/molecules-26-07264-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/148eb0ab9e06/molecules-26-07264-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/e81762893962/molecules-26-07264-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/db2fcb04b2ff/molecules-26-07264-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/73500e8c4106/molecules-26-07264-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/76e73a12c255/molecules-26-07264-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/d0b963c6e1c2/molecules-26-07264-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/55eb17a65107/molecules-26-07264-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/9a1edf00b051/molecules-26-07264-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/84221c69db66/molecules-26-07264-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/559c8a9e2914/molecules-26-07264-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/a3db34655ef0/molecules-26-07264-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/38b69be19278/molecules-26-07264-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/daddb43004e8/molecules-26-07264-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/372cb99a4583/molecules-26-07264-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/52688cc0d3dc/molecules-26-07264-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/3d362df517e8/molecules-26-07264-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/4f02f2d8d0c1/molecules-26-07264-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/6c20ba7045bf/molecules-26-07264-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/48cf26d150a5/molecules-26-07264-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/b122807bc834/molecules-26-07264-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/148eb0ab9e06/molecules-26-07264-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/e81762893962/molecules-26-07264-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/db2fcb04b2ff/molecules-26-07264-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/73500e8c4106/molecules-26-07264-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/76e73a12c255/molecules-26-07264-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/d0b963c6e1c2/molecules-26-07264-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/55eb17a65107/molecules-26-07264-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/9a1edf00b051/molecules-26-07264-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/84221c69db66/molecules-26-07264-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/559c8a9e2914/molecules-26-07264-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/a3db34655ef0/molecules-26-07264-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/38b69be19278/molecules-26-07264-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/daddb43004e8/molecules-26-07264-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/372cb99a4583/molecules-26-07264-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/52688cc0d3dc/molecules-26-07264-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/8659150/3d362df517e8/molecules-26-07264-g020.jpg

相似文献

[1]
Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties.

Molecules. 2021-11-30

[2]
Alginate hydrogels as biomaterials.

Macromol Biosci. 2006-8-7

[3]
Modification of alginate degradation properties using orthosilicic acid.

J Mech Behav Biomed Mater. 2011-10-18

[4]
Light-triggered cross-linking of alginates with caged Ca2+.

Biomacromolecules. 2013-4-5

[5]
Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.

J Biomed Mater Res A. 2008-3-15

[6]
Alginate-based hydrogels with improved adhesive properties for cell encapsulation.

Int J Biol Macromol. 2015-4-4

[7]
Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.

Int J Biol Macromol. 2017-9-14

[8]
Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.

J Biomater Sci Polym Ed. 2016-6

[9]
Efficient functionalization of alginate biomaterials.

Biomaterials. 2015-12-2

[10]
Alginate esters via chemoselective carboxyl group modification.

Carbohydr Polym. 2013-8-13

引用本文的文献

[1]
Mimicking scaffold membrane based electrospun polyurethane fibers with functional extracellular-like component coating for guided bone regeneration scaffolds.

Biomater Biosyst. 2025-8-8

[2]
Ionic Crosslinking Improves the Stiffness and Toughness of Protein Hydrogels.

Polym Sci Technol. 2025-5-19

[3]
Mucoadhesive nanofibers for ocular drug delivery: mechanisms, design strategies, and applications.

Drug Deliv Transl Res. 2025-6-25

[4]
Electrically conductive biopolymer-based hydrogels and fibrous materials fabricated using 3D printing and electrospinning for cardiac tissue engineering.

Bioact Mater. 2025-6-9

[5]
Enabling Stable Recycling of L-Arabinose Isomerase Through Whole-Cell Immobilization for Efficient and Cost-Effective D-Tagatose Production.

Foods. 2025-4-28

[6]
Effective adsorptive removal of triclosan from water using bio-nanocomposite hydrogel beads.

Front Chem. 2025-4-11

[7]
Therapeutic Prospects of Polysaccharides: Extraction, Purification, and Functional Activity.

Mar Drugs. 2025-4-8

[8]
Shear and Compressive Stiffening of Dual-Cross-Linked Alginate Hydrogels with Tunable Viscoelasticity.

ACS Appl Bio Mater. 2025-5-19

[9]
Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches.

medRxiv. 2025-3-21

[10]
Recent advances in polymeric nanoparticles for the treatment of hepatic diseases.

Front Pharmacol. 2025-1-24

本文引用的文献

[1]
Alginate based antimicrobial hydrogels formed by integrating Diels-Alder "click chemistry" and the thiol-ene reaction.

RSC Adv. 2018-3-21

[2]
Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels.

ACS Appl Bio Mater. 2021-4-19

[3]
Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: A review.

Carbohydr Polym. 2021-11-15

[4]
The Molecular Structure and Self-Assembly Behavior of Reductive Amination of Oxidized Alginate Derivative for Hydrophobic Drug Delivery.

Molecules. 2021-9-25

[5]
Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance.

Polymers (Basel). 2021-9-30

[6]
Evaluation of Interleukin-4-Loaded Sodium Alginate-Chitosan Microspheres for Their Support of Microvascularization in Engineered Tissues.

ACS Biomater Sci Eng. 2021-10-11

[7]
Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels.

J Biomater Sci Polym Ed. 2022-2

[8]
Alginate modification via click chemistry for biomedical applications.

Carbohydr Polym. 2021-10-15

[9]
Cell encapsulated and microenvironment modulating microbeads containing alginate hydrogel system for bone tissue engineering.

Prog Biomater. 2021-6

[10]
RGD-Modified Alginate-GelMA Hydrogel Sheet Containing Gingival Mesenchymal Stem Cells: A Unique Platform for Wound Healing and Soft Tissue Regeneration.

ACS Biomater Sci Eng. 2021-8-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索