Bhalani Dixit V, Nutan Bhingaradiya, Kumar Avinash, Singh Chandel Arvind K
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364002, India.
Biomedicines. 2022 Aug 23;10(9):2055. doi: 10.3390/biomedicines10092055.
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry's screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
药理活性分子的低水溶性限制了它们的药理潜力,但溶解度参数不能降低,因此人们采用了不同的方法来提高它们的生物利用度。低溶解度的药物活性分子在药物创新和开发中失败的风险更高。药代动力学、药效学以及其他几个参数,如药物分布、蛋白结合和吸收,主要受其溶解度的影响。在所有药物剂型中,口服剂型占比超过50%,且药物分子应为水溶性。为使药物分子在靶位点发挥良好的治疗活性,溶解度和生物利用度是关键因素。制药行业的筛选项目发现,约40%的新化学实体(NCEs)在制剂和开发阶段面临各种困难。这些药物的溶解度和生物利用度较低。提高药物的生物利用度和溶解度是药物制剂领域的一项重大挑战。根据生物药剂学分类,II类和IV类药物(活性药物成分)表现出溶解度差、生物利用度低和溶出度小的特点。本文讨论了各种提高难溶性药物溶解度的技术,例如活性分子的络合、乳剂形成、胶束、微乳剂、助溶剂、聚合物胶束制备、粒径减小技术、药用盐、前药、固态转变技术、软胶囊技术、药物纳米晶体、固体分散法、晶体工程技术和纳米形态技术。本综述主要参考了一些相关研究报告,描述了其他几种提高溶解度和生物利用度的先进方法,如晶体工程、微粉化、固体分散体、纳米尺寸化、环糊精的应用、固体脂质纳米粒、胶体药物递送系统和药物偶联物。