Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran 16511-53311, Iran.
School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1958-1968. doi: 10.1021/acsabm.0c01586. Epub 2021 Jan 20.
Optical biosensors are sensitive devices used in bioanalytics detection. Analysis of blood constituents is very important for the detection of major diseases and also performs a significant role in the diagnosis of diabetes, various cancers, and cardiovascular disorders. In this work, a three-dimensional photonic crystal-based biosensor composed of zeolitic imidazolate framework-8 (ZIF-8) nanoarrays are placed on polydopamine (PDA) coated on a silicon substrate. This sensor is designed, simulated, and evaluated for various blood components in the wavelength range of 1.1 to 1.5 μm by the finite-difference time-domain (FDTD) method. The proposed biosensor was used for 10 types of blood components such as biotin-streptavidin, bovine serum albumin (BSA), cytop, glucose (40 mg/100 mL), hemoglobin, blood plasma, Sylgard184, white blood compounds, urethane dimethacrylate, and polyacrylamide. The FDTD technique was used for the performance analysis of the biosensor. The design parameters of the radius, the lattice constant, the thickness of the ZIF-8 arrays, and the PDA layer thickness are chosen to optimize the photonic crystal structure. This study indicates that the thickness of the PDA is the most important parameter for peak wavelength value in comparison to the other physical parameters. The factors for optimizing the photonic crystal-based biosensors such as the peak wavelength value (PWV), sensitivity, full width at half-maximum (FWHM), and figure of merit (FOM) are significant in comparison with pertinent works in this field, which evaluated 171 nm/RIU, 7.62 nm, and 22.5 RIU, respectively. A change of 0.01 nm in the refractive index of the constituents of the blood leads to a shift of 80 nm in the maximum peak wavelength, therefore acting as a functional biosensor with a high detection limit of 0.004 RIU.
光学生物传感器是用于生物分析检测的灵敏设备。分析血液成分对于检测主要疾病非常重要,并且在诊断糖尿病、各种癌症和心血管疾病方面也起着重要作用。在这项工作中,基于沸石咪唑酯骨架-8 (ZIF-8) 纳米阵列的三维光子晶体生物传感器放置在聚多巴胺 (PDA) 涂层的硅衬底上。通过有限差分时域 (FDTD) 方法,在 1.1 到 1.5 μm 的波长范围内,对该传感器进行了设计、模拟和评估,用于各种血液成分。该生物传感器用于十种血液成分,如生物素-链霉亲和素、牛血清白蛋白 (BSA)、细胞、葡萄糖 (40 mg/100 mL)、血红蛋白、血浆、Sylgard184、白细胞化合物、尿烷二甲基丙烯酸酯和聚丙烯酰胺。FDTD 技术用于生物传感器的性能分析。选择半径、晶格常数、ZIF-8 阵列的厚度和 PDA 层的厚度等设计参数来优化光子晶体结构。与该领域的相关工作相比,本研究表明与其他物理参数相比,PDA 的厚度是峰波长值的最重要参数。与该领域的相关工作相比,优化基于光子晶体的生物传感器的因素,如峰值波长值 (PWV)、灵敏度、半峰全宽 (FWHM) 和品质因数 (FOM) 都具有重要意义,分别为 171nm/RIU、7.62nm 和 22.5RIU。血液成分的折射率变化 0.01nm 会导致最大峰值波长发生 80nm 的偏移,因此作为具有 0.004RIU 高检测限的功能生物传感器。