Suppr超能文献

利用光子晶体生物传感器和等离子体核壳结构对革兰氏阳性和革兰氏阴性血流细菌进行检测及光热灭活

Detection and photothermal inactivation of Gram-positive and Gram-negative bloodstream bacteria using photonic crystal biosensor and plasmonic core-shell.

作者信息

Birhanu Hayilesilassie Ruth, Gemta Abebe Belay, Maremi Fekadu Tolessa, Getahun Kumela Alemayehu, Gudishe Kusse, Dana Bereket Delga

机构信息

Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia

Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University P.O.Box 032 Tullu Awulia Ethiopia.

出版信息

RSC Adv. 2024 Apr 10;14(16):11594-11603. doi: 10.1039/d4ra01802h. eCollection 2024 Apr 3.

Abstract

Plasmonics and core-shell nanomaterials hold great potential to develop pharmaceuticals and medical equipment due to their eco-friendly and cost effective fabrication procedures. Despite these advancements, combating drug-resistant bacterial infections remains a global challenge. Therefore, this study aims to introduce a tailored theoretical framework for a one-dimensional (1D) photonic crystal biosensor (PCB) composed of (ZrO/GaN)/defect layer/(ZrO/GaN), designed to detect Gram-positive and Gram-negative bloodstream bacteria employing the transfer matrix method (TMM). In addition, using the finite difference methods (FDM), the photothermal inactivation of bloodstream bacteria with plasmonic core-shell structures (FeO@AuBiS) was explored using key factors such as light absorption, heat generation, and thermal diffusion. By incorporating six dielectric layers and contaminated blood into the proposed PCB, a maximum sensitivity of 562 nm per RIU was recorded, and using rod-shaped plasmonic core-shell structures, 5.8 nm light absorption capacity and 152 K change in temperature were achieved. The maximum detection sensitivity, light absorption, heat conduction and heat convection capacity of the proposed 1D PCB and plasmonic core-shell show an effective approach to combating drug-resistant bacteria.

摘要

由于其环保且经济高效的制造工艺,等离子体激元学和核壳纳米材料在开发药物和医疗设备方面具有巨大潜力。尽管取得了这些进展,但对抗耐药细菌感染仍然是一项全球性挑战。因此,本研究旨在为一维 (1D) 光子晶体生物传感器 (PCB) 引入一个定制的理论框架,该传感器由 (ZrO/GaN)/缺陷层/(ZrO/GaN) 组成,旨在采用转移矩阵法 (TMM) 检测革兰氏阳性和革兰氏阴性血流细菌。此外,使用有限差分法 (FDM),利用光吸收、发热和热扩散等关键因素,探索了具有等离子体核壳结构 (FeO@AuBiS) 的血流细菌的光热失活。通过将六个介电层和受污染的血液纳入所提出的 PCB 中,记录到每RIU 562 nm 的最大灵敏度,并且使用棒状等离子体核壳结构,实现了 5.8 nm 的光吸收能力和 152 K 的温度变化。所提出的一维 PCB 和等离子体核壳的最大检测灵敏度、光吸收、热传导和热对流能力显示出一种对抗耐药细菌的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee6/11004602/b9a5d55c69d4/d4ra01802h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验