Suppr超能文献

作为类器官生物载体,在宏观尺度上可控合成复合核壳胶囊。

Controllable Fabrication of Composite Core-Shell Capsules at a Macroscale as Organoid Biocarriers.

机构信息

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

ACS Appl Bio Mater. 2021 Feb 15;4(2):1584-1596. doi: 10.1021/acsabm.0c01441. Epub 2021 Jan 27.

Abstract

The cell encapsulation technology is promising for generation of functional carriers with well-tailored structures for efficient transplantation and immunoprotection of cells/tissues. Stem cell organoids are highly potential for recapitulating the intricate architectures and functionalities of native organs and also providing an unlimited cell source for cellular replacement therapy. However, it remains challenging for loading the organoids with hundreds of micrometers size by current existing cell carriers. Herein, a simple and facile coextrusion strategy is developed for controllable fabrication of Ca-alginate/poly(ethylene imine) (Alg/PEI) macrocapsules for efficient encapsulation and cultivation of organoids. Human-induced pluripotent stem cell (hiPSC)-derived islet organoids are encapsulated in the aqueous compartments of the capsules and immunoisolated by a semipermeable Alg/PEI shell. electrostatic interactions, a PEI polyelectrolyte can be incorporated in the shell for restricting its swelling, thus effectively improving the stability of the capsules. The Alg/PEI macrocapsules are featured with desirable selective permeability for immunoisolation of antibodies from reaching the loaded organoids. Meanwhile, they also exhibit excellent permeability for mass transfer due to their well-defined core-shell structure. As such, the encapsulated islet organoids contain islet-specific multicellular components, with high viability and sensitive glucose-stimulated insulin secretion function. The proposed approach provides a versatile encapsulation system for tissue engineering and regenerative medicine applications.

摘要

细胞封装技术在生成具有良好结构的功能性载体方面具有广阔的前景,这些载体可以有效地移植和免疫保护细胞/组织。干细胞类器官在模拟天然器官的复杂结构和功能方面具有巨大的潜力,同时也为细胞替代治疗提供了无限的细胞来源。然而,通过现有的细胞载体来装载几百微米大小的类器官仍然具有挑战性。在此,开发了一种简单易行的共挤出策略,用于可控地制造藻酸盐/聚乙烯亚胺(Alg/PEI)大胶囊,以有效地封装和培养类器官。人诱导多能干细胞(hiPSC)衍生的胰岛类器官被封装在胶囊的水相腔室中,并通过半透性的 Alg/PEI 壳进行免疫隔离。通过静电相互作用,可以将聚电解质聚乙烯亚胺(PEI)掺入壳中,以限制其溶胀,从而有效地提高胶囊的稳定性。Alg/PEI 大胶囊具有理想的选择性渗透性,可阻止抗体到达负载的类器官,实现免疫隔离。同时,由于其具有良好定义的核壳结构,它们也表现出优异的传质渗透性。因此,封装的胰岛类器官包含胰岛特异性的多细胞成分,具有高活力和对葡萄糖刺激的胰岛素分泌功能。该方法为组织工程和再生医学应用提供了一种通用的封装系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验