Suppr超能文献

脊髓类器官研究进展:加深对神经发育、疾病建模和再生医学的理解

Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine.

作者信息

Huang Ruiqi, Zhu Yanjing, Chen Haokun, Yu Liqun, Liu Zhibo, Liu Yuchen, Wang Zhaojie, He Xiaolie, Yang Li, Xu Xu, Bai Yuxin, Chen Bairu, Zhu Rongrong

机构信息

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.

Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.

出版信息

Biomater Transl. 2024 Nov 15;5(4):355-371. doi: 10.12336/biomatertransl.2024.04.003. eCollection 2024.

Abstract

Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders. Despite these strides, challenges in achieving vascularisation and mature neuronal integration persist. The future of SCOs lies in addressing these limitations, potentially leading to transformative impactions in regenerative medicine and therapeutic development.

摘要

干细胞衍生的脊髓类器官(SCOs)彻底改变了脊髓发育和疾病机制的研究,提供了一个三维模型,再现了天然组织的复杂性。本综述总结了SCO技术的最新进展,强调了它们在模拟脊髓形态发生中的作用及其在神经退行性疾病研究中的应用。我们讨论了在诱导SCOs内区域特异性和细胞多样性方面的方法学突破,这些突破提高了它们在药物筛选中的预测能力以及在模拟神经退行性疾病和神经肌肉疾病等病理状况方面的相关性。尽管取得了这些进展,但在实现血管化和成熟神经元整合方面仍存在挑战。SCOs的未来在于克服这些限制,这可能会在再生医学和治疗开发方面带来变革性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e08/11764192/4a59b0af32bd/bt-05-04-355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验