Suppr超能文献

使用核壳解耦水凝胶胶囊实现类器官的可扩展生产和低温储存。

Scalable Production and Cryostorage of Organoids Using Core-Shell Decoupled Hydrogel Capsules.

作者信息

Lu Yen-Chun, Fu Dah-Jiun, An Duo, Chiu Alan, Schwartz Robert, Nikitin Alexander Yu, Ma Minglin

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.

Department of Biomedical Science, Cornell University, Ithaca, NY 14853, USA.

出版信息

Adv Biosyst. 2017 Dec;1(12). doi: 10.1002/adbi.201700165. Epub 2017 Nov 22.

Abstract

Organoids, organ-mimicking multicellular structures derived from pluripotent stem cells or organ progenitors, have recently emerged as an important system for both studies of stem cell biology and development of potential therapeutics; however, a large-scale culture of organoids and cryopreservation for whole organoids, a prerequisite for their industrial and clinical applications, has remained a challenge. Current organoid culture systems relying on embedding the stem or progenitor cells in bulk extracellular matrix (ECM) hydrogels (e.g., Matrigel™) have limited surface area for mass transfer and are not suitable for large-scale productions. Here, we demonstrate a capsule-based, scalable organoid production and cryopreservation platform. The capsules have a core-shell structure where the core consists of Matrigel™ that supports the growth of organoids, and the alginate shell form robust spherical capsules, enabling suspension culture in stirred bioreactors. Compared with conventional, bulk ECM hydrogels, the capsules, which could be produced continuously by a two-fluidic electrostatic co-spraying method, provided better mass transfer through both diffusion and convection. The core-shell structure of the capsules also leads to better cell recovery after cryopreservation of organoids probably through prevention of intracellular ice formation.

摘要

类器官是源自多能干细胞或器官祖细胞的模仿器官的多细胞结构,最近已成为干细胞生物学研究和潜在治疗方法开发的重要系统;然而,类器官的大规模培养以及整个类器官的冷冻保存(这是其工业和临床应用的先决条件)仍然是一个挑战。当前的类器官培养系统依赖于将干细胞或祖细胞嵌入大量细胞外基质(ECM)水凝胶(例如基质胶™)中,传质的表面积有限,不适合大规模生产。在此,我们展示了一种基于胶囊的、可扩展的类器官生产和冷冻保存平台。这些胶囊具有核壳结构,其中核由支持类器官生长的基质胶™组成,藻酸盐壳形成坚固的球形胶囊,能够在搅拌生物反应器中进行悬浮培养。与传统的大量ECM水凝胶相比,通过双流体静电共喷射方法可以连续生产的这些胶囊,通过扩散和对流提供了更好的传质。胶囊的核壳结构还可能通过防止细胞内冰晶形成,在类器官冷冻保存后实现更好的细胞复苏。

相似文献

1
Scalable Production and Cryostorage of Organoids Using Core-Shell Decoupled Hydrogel Capsules.
Adv Biosyst. 2017 Dec;1(12). doi: 10.1002/adbi.201700165. Epub 2017 Nov 22.
2
One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs.
Biomater Sci. 2020 Oct 7;8(19):5476-5488. doi: 10.1039/d0bm01085e. Epub 2020 Sep 11.
3
Controllable Fabrication of Composite Core-Shell Capsules at a Macroscale as Organoid Biocarriers.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1584-1596. doi: 10.1021/acsabm.0c01441. Epub 2021 Jan 27.
4
A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling Stem Cell Organoid Engineering.
Adv Sci (Weinh). 2020 Apr 11;7(11):1903739. doi: 10.1002/advs.201903739. eCollection 2020 Jun.
5
Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels.
bioRxiv. 2024 Mar 19:2024.03.19.585720. doi: 10.1101/2024.03.19.585720.
6
Defined Alginate Hydrogels Support Spinal Cord Organoid Derivation, Maturation, and Modeling of Spinal Cord Diseases.
Adv Healthc Mater. 2023 Apr;12(9):e2202342. doi: 10.1002/adhm.202202342. Epub 2022 Dec 23.
9
3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.
Biomaterials. 2018 Sep;177:27-39. doi: 10.1016/j.biomaterials.2018.05.031. Epub 2018 May 25.

引用本文的文献

2
The application of liver cancer organoids in tumour precision medicine: A comprehensive review.
ILIVER. 2025 Jul 5;4(3):100179. doi: 10.1016/j.iliver.2025.100179. eCollection 2025 Sep.
3
Scalable Matrigel-Free Suspension Culture for Generating High-Quality Human Liver Ductal Organoids.
Cell Prolif. 2025 Sep;58(9):e70033. doi: 10.1111/cpr.70033. Epub 2025 Apr 1.
4
5
Engineered Microenvironments for 3D Cell Culture and Regenerative Medicine: Challenges, Advances, and Trends.
Bioengineering (Basel). 2022 Dec 22;10(1):17. doi: 10.3390/bioengineering10010017.
6
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15.
7
Farm and Companion Animal Organoid Models in Translational Research: A Powerful Tool to Bridge the Gap Between Mice and Humans.
Front Med Technol. 2022 May 12;4:895379. doi: 10.3389/fmedt.2022.895379. eCollection 2022.
8
Alginate Core-Shell Capsules for 3D Cultivation of Adipose-Derived Mesenchymal Stem Cells.
Bioengineering (Basel). 2022 Feb 6;9(2):66. doi: 10.3390/bioengineering9020066.
9
Towards organoid culture without Matrigel.
Commun Biol. 2021 Dec 10;4(1):1387. doi: 10.1038/s42003-021-02910-8.

本文引用的文献

1
Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture.
J Mater Chem B. 2015 Jan 21;3(3):353-360. doi: 10.1039/c4tb01735h. Epub 2014 Dec 4.
2
The organoid architect.
Science. 2017 Aug 25;357(6353):746-749. doi: 10.1126/science.357.6353.746.
3
The promise of organ and tissue preservation to transform medicine.
Nat Biotechnol. 2017 Jun 7;35(6):530-542. doi: 10.1038/nbt.3889.
4
Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
Sci Transl Med. 2017 Mar 1;9(379). doi: 10.1126/scitranslmed.aah4586.
5
Designer matrices for intestinal stem cell and organoid culture.
Nature. 2016 Nov 24;539(7630):560-564. doi: 10.1038/nature20168. Epub 2016 Nov 16.
7
8
A Biomimetic Core-Shell Platform for Miniaturized 3D Cell and Tissue Engineering.
Part Part Syst Charact. 2015 Aug;32(8):809-816. doi: 10.1002/ppsc.201500025. Epub 2015 May 12.
9
The crucial role of zona pellucida in cryopreservation of oocytes by vitrification.
Cryobiology. 2015 Oct;71(2):350-5. doi: 10.1016/j.cryobiol.2015.08.012. Epub 2015 Aug 20.
10
Single-cell messenger RNA sequencing reveals rare intestinal cell types.
Nature. 2015 Sep 10;525(7568):251-5. doi: 10.1038/nature14966. Epub 2015 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验