Suppr超能文献

用光诱导的受体酪氨酸激酶激活神经营养因子信号通路。

Activation of neurotrophin signalling with light‑inducible receptor tyrosine kinases.

机构信息

Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.

School of Life Science, Nantong University, Nantong, Jiangsu 226019, P.R. China.

出版信息

Mol Med Rep. 2022 Feb;25(2). doi: 10.3892/mmr.2022.12586. Epub 2022 Jan 11.

Abstract

Optogenetics combined with protein engineering based on natural light‑sensitive dimerizing proteins has evolved as a powerful strategy to study cellular functions. The present study focused on tropomyosin kinase receptors (Trks) that have been engineered to be light‑sensitive. Trk belongs to the superfamily of receptor tyrosine kinases (RTKs), which are single‑pass transmembrane receptors that are activated by natural ligands and serve crucial roles in cellular growth, differentiation, metabolism and motility. However, functional variations exist among receptors fused with light‑sensitive proteins. The present study proposed a signal transduction model for light‑induced receptor activation. This model is based on analysis of previous light‑induced Trk receptors reported to date and comparisons to the activation mechanism of natural receptors. In this model, quantitative differences on the dimerization induced from either top‑to‑bottom or bottom‑to‑up may lead to the varying amplitude of intracellular signals. We hypothesize that the top‑to‑bottom propagation is more favourable for activation and yields better results compared with the bottom‑to‑top direction. The careful delineation of the dimerization mechanisms fine‑tuning activation will guide future design for an optimum cellular output with the precision of light.

摘要

光遗传学与基于天然光敏二聚体蛋白的蛋白质工程相结合,已发展成为研究细胞功能的强大策略。本研究集中于肌球蛋白激酶受体(Trk),该受体已被工程化为光敏受体。Trk 属于受体酪氨酸激酶(RTK)超家族,RTK 是单次跨膜受体,被天然配体激活,在细胞生长、分化、代谢和运动中发挥关键作用。然而,与光敏蛋白融合的受体存在功能差异。本研究提出了一种光诱导受体激活的信号转导模型。该模型基于对迄今为止报道的光诱导 Trk 受体的分析,并与天然受体的激活机制进行了比较。在该模型中,自上而下或自下而上诱导的二聚化的定量差异可能导致细胞内信号的幅度变化。我们假设自上而下的传播更有利于激活,并产生比自下而上方向更好的结果。精细描绘二聚化机制可微调激活,从而指导未来的设计,以实现光的精度的最佳细胞输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1778/8767455/f74079dbf466/mmr-25-02-12586-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验