Choi Christopher, Ashby David, Rao You, Anber Elaf, Hart James L, Butts Danielle, Wilson Catrina, Levin Emily, Taheri Mitra, Ghazisaeidi Maryam, Dunn Bruce, Doan-Nguyen Vicky
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Sandia National Laboratories, Livermore, California 94550, United States.
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):3980-3990. doi: 10.1021/acsami.1c19963. Epub 2022 Jan 11.
Transition metal phosphorus trisulfide materials have received considerable research interest since the 1980-1990s as they exhibit promising energy conversion and storage properties. However, the mechanistic insights into Li-ion storage in these materials are poorly understood to date. Here, we explore the lithiation of NiPS material by employing pair-distribution function analysis, Monte Carlo molecular dynamics calculations, and a series of characterizations. Our findings elucidate complex ion insertion and storage dynamics around a layered polyanionic compound, which undergoes intercalation and conversion reactions in a sequential manner. This study of NiPS material exemplifies the Li-ion storage mechanism in transition metal phosphorus sulfide materials and provides insights into the challenges associated with achieving reliable, high-energy phosphorus trisulfide systems.
自20世纪80年代至90年代以来,过渡金属三硫化磷材料因其展现出有前景的能量转换和存储性能而受到了相当多的研究关注。然而,迄今为止,对于这些材料中锂离子存储的机理认识仍很不足。在此,我们通过采用对分布函数分析、蒙特卡罗分子动力学计算以及一系列表征手段,探索了NiPS材料的锂化过程。我们的研究结果阐明了层状聚阴离子化合物周围复杂的离子插入和存储动力学,该化合物会依次经历嵌入和转化反应。对NiPS材料的这项研究例证了过渡金属硫化磷材料中的锂离子存储机制,并为实现可靠的高能三硫化磷体系所面临的挑战提供了见解。