Suppr超能文献

用于基于等离子体活化六甲基二硅氧烷的等离子体聚合物的硅烷化,以实现具有可控表面化学性质的涂层的与基材无关的沉积。

Silanization of Plasma-Activated Hexamethyldisiloxane-Based Plasma Polymers for Substrate-Independent Deposition of Coatings with Controlled Surface Chemistry.

作者信息

Egghe Tim, Ghobeira Rouba, Esbah Tabaei Parinaz Saadat, Morent Rino, Hoogenboom Richard, De Geyter Nathalie

机构信息

Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.

Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.

出版信息

ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4620-4636. doi: 10.1021/acsami.1c18223. Epub 2022 Jan 11.

Abstract

Plasma polymerization has emerged as an appealing technique for surface modification because of its advantages over a variety of conventional techniques, including ease-of-use and the possibility to modify nearly any substrate. One of the main challenges of plasma polymer-based surface modification, however, is having control over the coating chemistry, as plasma deposition generates a diversity of chemical structures. Therefore, this study presents an alternative plasma-based method for the fabrication of coatings that contain selective functionalities. In a first step, hexamethyldisiloxane (HMDSO) plasma polymerization is performed in a medium-pressure dielectric barrier discharge (DBD) to deposit polydimethylsiloxane (PDMS)-like coatings. In a second step, this coating is exposed to an air plasma in a similar DBD setup to introduce silanol groups on the surface. These groups are used in a third and final step as anchoring points for grafting of (3-aminopropyl)triethoxysilane (APTES) and (3-bromopropyl)trichlorosilane (BrPTCS) to selectively introduce amino or bromo groups, respectively. X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements indicated that the first two steps were successful. Moreover, the coating could be synthesized on three different surfaces, namely, glass, ultrahigh-molecular-weight polyethylene, and polytetrafluoroethylene, indicating the wide applicability of the developed procedure. Afterward, XPS also proved that the APTES and BrPTCS grafting resulted in the formation of a coating containing primary amines and alkyl bromides, respectively, in combination with an organosilicon matrix containing silanol groups as remaining reactive groups, proving the successful synthesis of selective functional plasma-based coatings. The intermediate air-plasma-activation step was demonstrated to be necessary for successful and stable grafting of the final layer. In conclusion, this study established a general procedure for the development of coatings with selective functionality that can be applied on a wide variety of substrates for, e.g., biosensor applications, biomolecule, or polymer immobilization or for the synthesis of antibacterial coatings.

摘要

由于等离子体聚合相对于多种传统技术具有优势,包括使用简便以及能够对几乎任何基材进行改性,它已成为一种颇具吸引力的表面改性技术。然而,基于等离子体聚合物的表面改性的主要挑战之一是控制涂层化学性质,因为等离子体沉积会产生多种化学结构。因此,本研究提出了一种基于等离子体的替代方法来制备具有选择性功能的涂层。第一步,在中压介质阻挡放电(DBD)中进行六甲基二硅氧烷(HMDSO)等离子体聚合,以沉积聚二甲基硅氧烷(PDMS)类涂层。第二步,在类似的DBD装置中将该涂层暴露于空气等离子体中,以在表面引入硅醇基团。在第三步也是最后一步中,这些基团用作锚定点,用于接枝(3-氨丙基)三乙氧基硅烷(APTES)和(3-溴丙基)三氯硅烷(BrPTCS),分别选择性地引入氨基或溴基。X射线光电子能谱(XPS)和水接触角(WCA)测量表明前两步是成功的。此外,该涂层可以在三种不同的表面上合成,即玻璃、超高分子量聚乙烯和聚四氟乙烯,这表明所开发的方法具有广泛的适用性。之后,XPS还证明APTES和BrPTCS接枝分别导致形成含有伯胺和烷基溴的涂层,同时还形成了含有硅醇基团作为剩余反应性基团的有机硅基质,证明成功合成了具有选择性功能的基于等离子体的涂层。中间的空气等离子体活化步骤被证明是成功且稳定地接枝最后一层所必需的。总之,本研究建立了一种开发具有选择性功能涂层的通用方法,该方法可应用于多种基材,例如用于生物传感器应用、生物分子或聚合物固定,或用于合成抗菌涂层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验