Suppr超能文献

水凝胶力学影响脑类器官的生长和发育。

Hydrogel Mechanics Influence the Growth and Development of Embedded Brain Organoids.

机构信息

Department of Biomedical Engineering, McGill University, Montréal, Quebec H3A 2B4, Canada.

The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montréal, Quebec H3A 2B4, Canada.

出版信息

ACS Appl Bio Mater. 2022 Jan 17;5(1):214-224. doi: 10.1021/acsabm.1c01047. Epub 2021 Dec 22.

Abstract

Brain organoids are three-dimensional, tissue-engineered neural models derived from induced pluripotent stem cells that enable studies of neurodevelopmental and disease processes. Mechanical properties of the microenvironment are known to be critical parameters in tissue engineering, but the mechanical consequences of the encapsulating matrix on brain organoid growth and development remain undefined. Here, Matrigel was modified with an interpenetrating network (IPN) of alginate, to tune the mechanical properties of the encapsulating matrix. Brain organoids grown in IPNs were viable, with the characteristic formation of neuroepithelial buds. However, organoid growth was significantly restricted in the stiffest matrix tested. Moreover, stiffer matrixes skewed cell populations toward mature neuronal phenotypes, with fewer and smaller neural rosettes. These findings demonstrate that the mechanics of the culture environment are important parameters in brain organoid development and show that the self-organizing capacity and subsequent architecture of brain organoids can be modulated by forces arising from growth-induced compression of the surrounding matrix. This study therefore suggests that carefully designing the mechanical properties of organoid encapsulation materials is a potential strategy to direct organoid growth and maturation toward desired structures.

摘要

脑类器官是三维组织工程化的神经模型,源自诱导多能干细胞,可用于研究神经发育和疾病过程。微环境的机械性能是组织工程学的关键参数,但封装基质对脑类器官生长和发育的机械影响仍未得到明确界定。在此,通过藻酸盐的互穿网络(IPN)对 Matrigel 进行改性,以调整封装基质的机械性能。在 IPN 中生长的脑类器官具有活力,并形成典型的神经上皮芽。然而,在测试的最硬基质中,类器官的生长受到显著限制。此外,较硬的基质使细胞群体向成熟神经元表型倾斜,神经玫瑰花结数量更少且更小。这些发现表明,培养环境的力学特性是脑类器官发育的重要参数,并表明类器官的自组织能力和随后的结构可以通过周围基质生长诱导压缩产生的力来调节。因此,本研究表明,仔细设计类器官封装材料的机械性能是一种潜在的策略,可以将类器官的生长和成熟引导到所需的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验