文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非靶向尿液代谢组学和机器学习为自闭症谱系障碍儿童提供了潜在的代谢特征。

Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder.

作者信息

Liu Xian, Sun Xin, Guo Cheng, Huang Zhi-Fang, Chen Yi-Ru, Feng Fang-Mei, Wu Li-Jie, Chen Wen-Xiong

机构信息

Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin, China.

Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.

出版信息

Front Psychiatry. 2024 Feb 20;15:1261617. doi: 10.3389/fpsyt.2024.1261617. eCollection 2024.


DOI:10.3389/fpsyt.2024.1261617
PMID:38445087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10912307/
Abstract

BACKGROUND: Complementary to traditional biostatistics, the integration of untargeted urine metabolomic profiling with Machine Learning (ML) has the potential to unveil metabolic profiles crucial for understanding diseases. However, the application of this approach in autism remains underexplored. Our objective was to delve into the metabolic profiles of autism utilizing a comprehensive untargeted metabolomics platform coupled with ML. METHODS: Untargeted metabolomics quantification (UHPLC/Q-TOF-MS) was performed for urine analysis. Feature selection was conducted using Lasso regression, and logistic regression, support vector machine, random forest, and extreme gradient boosting were utilized for significance stratification. Pathway enrichment analysis was performed to identify metabolic pathways associated with autism. RESULTS: A total of 52 autistic children and 40 typically developing children were enrolled. Lasso regression identified ninety-two urinary metabolites that significantly differed between the two groups. Distinct metabolites, such as prostaglandin E2, phosphonic acid, lysine, threonine, and phenylalanine, were revealed to be associated with autism through the application of four different ML methods (p<0.05). The alterations observed in the phosphatidylinositol and inositol phosphate metabolism pathways were linked to the pathophysiology of autism (p<0.05). CONCLUSION: Significant urinary metabolites, including prostaglandin E2, phosphonic acid, lysine, threonine, and phenylalanine, exhibit associations with autism. Additionally, the involvement of the phosphatidylinositol and inositol phosphate pathways suggests their potential role in the pathophysiology of autism.

摘要

背景:与传统生物统计学相辅相成,将非靶向尿液代谢组学分析与机器学习(ML)相结合,有潜力揭示对于理解疾病至关重要的代谢谱。然而,这种方法在自闭症中的应用仍未得到充分探索。我们的目标是利用综合的非靶向代谢组学平台结合ML深入研究自闭症的代谢谱。 方法:对尿液进行非靶向代谢组学定量分析(超高效液相色谱/四极杆飞行时间质谱法)。使用套索回归进行特征选择,并利用逻辑回归、支持向量机、随机森林和极端梯度提升进行显著性分层。进行通路富集分析以识别与自闭症相关的代谢通路。 结果:共纳入52名自闭症儿童和40名发育正常的儿童。套索回归确定了两组之间有显著差异的92种尿液代谢物。通过应用四种不同的ML方法,发现前列腺素E2、膦酸、赖氨酸、苏氨酸和苯丙氨酸等不同代谢物与自闭症有关(p<0.05)。在磷脂酰肌醇和肌醇磷酸代谢途径中观察到的改变与自闭症的病理生理学相关(p<0.05)。 结论:包括前列腺素E2、膦酸、赖氨酸、苏氨酸和苯丙氨酸在内的显著尿液代谢物与自闭症有关。此外,磷脂酰肌醇和肌醇磷酸途径的参与表明它们在自闭症病理生理学中的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/9b1330a53261/fpsyt-15-1261617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/4824ecb67722/fpsyt-15-1261617-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/120325339612/fpsyt-15-1261617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/cb09f1acdfa6/fpsyt-15-1261617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/dcffdbdc243c/fpsyt-15-1261617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/9636b2d00c47/fpsyt-15-1261617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/9b1330a53261/fpsyt-15-1261617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/4824ecb67722/fpsyt-15-1261617-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/120325339612/fpsyt-15-1261617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/cb09f1acdfa6/fpsyt-15-1261617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/dcffdbdc243c/fpsyt-15-1261617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/9636b2d00c47/fpsyt-15-1261617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a7/10912307/9b1330a53261/fpsyt-15-1261617-g006.jpg

相似文献

[1]
Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder.

Front Psychiatry. 2024-2-20

[2]
Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

J Am Soc Nephrol. 2022-2

[3]
Untargeted metabolomics reveals hepatic metabolic disorder in the BTBR mouse model of autism and the significant role of liver in autism.

Cell Biochem Funct. 2023-7

[4]
Comparison of the Metabolic Profiles in the Plasma and Urine Samples Between Autistic and Typically Developing Boys: A Preliminary Study.

Front Psychiatry. 2021-6-4

[5]
Identification of biological signatures of cruciferous vegetable consumption utilizing machine learning-based global untargeted stable isotope traced metabolomics.

Front Nutr. 2024-7-3

[6]
Alterations in Gut Vitamin and Amino Acid Metabolism are Associated with Symptoms and Neurodevelopment in Children with Autism Spectrum Disorder.

J Autism Dev Disord. 2022-7

[7]
A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children.

Biochim Biophys Acta Mol Basis Dis. 2020-6-5

[8]
Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism.

Mol Autism. 2016-11-24

[9]
Serum Untargeted Metabolomics Reveal Potential Biomarkers of Progression of Diabetic Retinopathy in Asians.

Front Mol Biosci. 2022-6-9

[10]
Urinary and Plasma Metabolomics Identify the Distinct Metabolic Profile of Disease State in Chronic Mouse Model of Multiple Sclerosis.

J Neuroimmune Pharmacol. 2018-10-12

引用本文的文献

[1]
Hypometabolism in Autism Spectrum Disorder: Insights from Brain and Blood Transcriptomics.

Mol Neurobiol. 2025-4-15

[2]
Cerebrospinal fluid metabolomics in autistic regression reveals dysregulation of sphingolipids and decreased β-hydroxybutyrate.

EBioMedicine. 2025-4

[3]
Prostaglandins: Biological Action, Therapeutic Aspects, and Pathophysiology of Autism Spectrum Disorders.

Curr Issues Mol Biol. 2025-1-21

本文引用的文献

[1]
Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children.

J Microbiol. 2023-8

[2]
A novel mutation in intron 1 of Wnt1 causes developmental loss of dopaminergic neurons in midbrain and ASD-like behaviors in rats.

Mol Psychiatry. 2023-9

[3]
Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism.

Sci Rep. 2023-7-19

[4]
Neuroactive Amino Acid Profile in Autism Spectrum Disorder: Results from a Clinical Sample.

Children (Basel). 2023-2-20

[5]
Assessing the causal association between human blood metabolites and the risk of epilepsy.

J Transl Med. 2022-9-30

[6]
Overlapping Mechanisms of Action of Brain-Active Bacteria and Bacterial Metabolites in the Pathogenesis of Common Brain Diseases.

Nutrients. 2022-6-27

[7]
Recent advances in LC-MS-based metabolomics for clinical biomarker discovery.

Mass Spectrom Rev. 2023

[8]
Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care.

Brain. 2022-4-29

[9]
Global prevalence of autism: A systematic review update.

Autism Res. 2022-5

[10]
Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

J Am Soc Nephrol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索