Wu Mei, Zhang Xiaowei, Li Xiaomei, Qu Ke, Sun Yuanwei, Han Bo, Zhu Ruixue, Gao Xiaoyue, Zhang Jingmin, Liu Kaihui, Bai Xuedong, Li Xin-Zheng, Gao Peng
International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China.
Nat Commun. 2022 Jan 11;13(1):216. doi: 10.1038/s41467-021-27906-0.
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the electrical polarization response to mechanical strain gradients that is not restricted by the symmetry of materials. However, large elastic deformation is usually difficult to achieve in most solids, and the strain gradient at minuscule is challenging to control. Here, we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~1.2 nm) within 3-4-unit cells, and thus obtain atomic-scale flexoelectric polarization of up to ~38 μC cm at a 24° LaAlO grain boundary. Accompanied by the generation of the nanoscale flexoelectricity, the electronic structures of grain boundaries also become different. Hence, the flexoelectric effect at grain boundaries is essential to understand the electrical activities of oxide ceramics. We further demonstrate that for different materials, altering the misorientation angles of grain boundaries enables tunable strain gradients at the atomic scale. The engineering of grain boundaries thus provides a general and feasible pathway to achieve tunable flexoelectricity.
挠曲电是一种普遍存在且显著的机电耦合类型,它涉及到对机械应变梯度的电极化响应,这种响应不受材料对称性的限制。然而,在大多数固体中通常很难实现大的弹性变形,并且在微观尺度上控制应变梯度具有挑战性。在此,我们利用晶界独特的结构不均匀性,在3 - 4个晶胞内实现了高达约1.2纳米的巨大应变梯度,从而在24°的LaAlO晶界处获得了高达约38 μC/cm的原子尺度挠曲电极化。伴随着纳米尺度挠曲电的产生,晶界的电子结构也发生了变化。因此,晶界处的挠曲电效应对于理解氧化物陶瓷的电活性至关重要。我们进一步证明,对于不同的材料,改变晶界的取向差角能够在原子尺度上实现可调谐的应变梯度。因此晶界工程为实现可调谐挠曲电提供了一条通用且可行的途径。