Wang Yunlong, Kong Siyuan, Zhou Cong, Wang Yanfang, Zhang Yubo, Fang Yaping, Li Guoliang
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518120, China.
Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae651.
Advances in three-dimensional (3D) genomics have revealed the spatial characteristics of chromatin interactions in gene expression regulation, which is crucial for understanding molecular mechanisms in biological processes. High-throughput technologies like ChIA-PET, Hi-C, and their derivatives methods have greatly enhanced our knowledge of 3D chromatin architecture. However, the chromatin interaction mechanisms remain largely unexplored. Deep learning, with its powerful feature extraction and pattern recognition capabilities, offers a promising approach for integrating multi-omics data, to build accurate predictive models of chromatin interaction matrices. This review systematically summarizes recent advances in chromatin interaction matrix prediction models. By integrating DNA sequences and epigenetic signals, we investigate the latest developments in these methods. This article details various models, focusing on how one-dimensional (1D) information transforms into the 3D structure chromatin interactions, and how the integration of different deep learning modules specifically affects model accuracy. Additionally, we discuss the critical role of DNA sequence information and epigenetic markers in shaping 3D genome interaction patterns. Finally, this review addresses the challenges in predicting chromatin interaction matrices, in order to improve the precise mapping of chromatin interaction matrices and DNA sequence, and supporting the transformation and theoretical development of 3D genomics across biological systems.
三维(3D)基因组学的进展揭示了染色质相互作用在基因表达调控中的空间特征,这对于理解生物过程中的分子机制至关重要。像ChIA-PET、Hi-C及其衍生方法等高通量技术极大地增进了我们对3D染色质结构的了解。然而,染色质相互作用机制在很大程度上仍未得到探索。深度学习凭借其强大的特征提取和模式识别能力,为整合多组学数据提供了一种很有前景的方法,以构建染色质相互作用矩阵的准确预测模型。本综述系统地总结了染色质相互作用矩阵预测模型的最新进展。通过整合DNA序列和表观遗传信号,我们研究了这些方法的最新发展。本文详细介绍了各种模型,重点关注一维(1D)信息如何转化为3D结构的染色质相互作用,以及不同深度学习模块的整合如何具体影响模型准确性。此外,我们讨论了DNA序列信息和表观遗传标记在塑造3D基因组相互作用模式中的关键作用。最后,本综述阐述了预测染色质相互作用矩阵所面临的挑战,以便改进染色质相互作用矩阵和DNA序列的精确映射,并支持3D基因组学在生物系统中的转化和理论发展。