Suppr超能文献

自动化预测结构拷贝数变异的临床影响。

Automated prediction of the clinical impact of structural copy number variations.

机构信息

Geneton Ltd, 84104, Bratislava, Slovakia.

Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia.

出版信息

Sci Rep. 2022 Jan 11;12(1):555. doi: 10.1038/s41598-021-04505-z.

Abstract

Copy number variants (CNVs) play an important role in many biological processes, including the development of genetic diseases, making them attractive targets for genetic analyses. The interpretation of the effect of these structural variants is a challenging problem due to highly variable numbers of gene, regulatory, or other genomic elements affected by the CNV. This led to the demand for the interpretation tools that would relieve researchers, laboratory diagnosticians, genetic counselors, and clinical geneticists from the laborious process of annotation and classification of CNVs. We designed and validated a prediction method (ISV; Interpretation of Structural Variants) that is based on boosted trees which takes into account annotations of CNVs from several publicly available databases. The presented approach achieved more than 98% prediction accuracy on both copy number loss and copy number gain variants while also allowing CNVs being assigned "uncertain" significance in predictions. We believe that ISV's prediction capability and explainability have a great potential to guide users to more precise interpretations and classifications of CNVs.

摘要

拷贝数变异(CNVs)在许多生物学过程中起着重要作用,包括遗传疾病的发展,因此它们成为遗传分析的有吸引力的目标。由于受 CNV 影响的基因、调控或其他基因组元件的数量变化很大,因此解释这些结构变异的影响是一个具有挑战性的问题。这导致人们对解释工具的需求增加,这些工具可以使研究人员、实验室诊断人员、遗传咨询师和临床遗传学家从注释和分类 CNV 的繁琐过程中解脱出来。我们设计并验证了一种基于提升树的预测方法(ISV;结构变异的解释),该方法考虑了来自几个公开可用数据库的 CNV 注释。该方法在预测拷贝数缺失和拷贝数增益变体时的准确率均超过 98%,同时还允许将 CNV 预测为“不确定”的意义。我们相信,ISV 的预测能力和可解释性具有很大的潜力,可以帮助用户更准确地解释和分类 CNVs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9a6/8752772/62e95d39e8fb/41598_2021_4505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验