Geneton Ltd., Bratislava, Slovakia.
Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
Sci Rep. 2023 Jun 29;13(1):10531. doi: 10.1038/s41598-023-37352-1.
Clinical interpretation of copy number variants (CNVs) is a complex process that requires skilled clinical professionals. General recommendations have been recently released to guide the CNV interpretation based on predefined criteria to uniform the decision process. Several semiautomatic computational methods have been proposed to recommend appropriate choices, relieving clinicians of tedious searching in vast genomic databases. We have developed and evaluated such a tool called MarCNV and tested it on CNV records collected from the ClinVar database. Alternatively, the emerging machine learning-based tools, such as the recently published ISV (Interpretation of Structural Variants), showed promising ways of even fully automated predictions using broader characterization of affected genomic elements. Such tools utilize features additional to ACMG criteria, thus providing supporting evidence and the potential to improve CNV classification. Since both approaches contribute to evaluation of CNVs clinical impact, we propose a combined solution in the form of a decision support tool based on automated ACMG guidelines (MarCNV) supplemented by a machine learning-based pathogenicity prediction (ISV) for the classification of CNVs. We provide evidence that such a combined approach is able to reduce the number of uncertain classifications and reveal potentially incorrect classifications using automated guidelines. CNV interpretation using MarCNV, ISV, and combined approach is available for non-commercial use at https://predict.genovisio.com/ .
临床解读拷贝数变异 (CNV) 是一个复杂的过程,需要专业的临床医生。最近发布了一般建议,以基于预设标准指导 CNV 解读,从而统一决策过程。已经提出了几种半自动计算方法来推荐合适的选择,从而减轻临床医生在庞大的基因组数据库中进行繁琐搜索的负担。我们开发并评估了这样一个名为 MarCNV 的工具,并在 ClinVar 数据库中收集的 CNV 记录上对其进行了测试。或者,新兴的基于机器学习的工具,如最近发布的 ISV(结构变异的解读),显示了使用受影响基因组元素的更广泛特征进行全自动预测的有希望的方法。这些工具利用了除 ACMG 标准之外的其他特征,从而提供了支持证据,并有可能改善 CNV 分类。由于这两种方法都有助于评估 CNV 的临床影响,因此我们提出了一种基于自动化 ACMG 指南 (MarCNV) 的组合解决方案,并通过基于机器学习的致病性预测 (ISV) 来补充,以对 CNV 进行分类。我们提供的证据表明,这种组合方法能够减少不确定分类的数量,并使用自动化指南揭示潜在的不正确分类。MarCNV、ISV 和组合方法的 CNV 解读可在 https://predict.genovisio.com/ 上非商业使用。